Biblioteca de la Universidad Complutense de Madrid

Effects on the nutation of the non-zonal harmonics of third degree

Impacto

Folgueira, Marta y Souchay, J. y Kinoshita, Hiroshi (1998) Effects on the nutation of the non-zonal harmonics of third degree. Celestial Mechanics and Dynamical Astronomy, 69 . pp. 373-402. ISSN 0923-2958

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.

149kB

URL Oficial: http://www.springerlink.com/content/p004831g80371110/fulltext.pdf




Resumen

In this paper, we calculate the coefficients of the nutation for a rigid Earth model due to the C-3m and S-3m (m not equal 0) harmonics of the geopotential, starting from the Hamiltonian theory as developped by Kinoshita (1977). We show that these coefficients are far from bring negligible as given the level of truncation of 0.1 mu as which is necessary in the reconstruction of the tables of nutation, and also that their value is very close to that given by Bretagnon st al. (1997).


Tipo de documento:Artículo
Palabras clave:Non-zonal degree 3 harmonics, diurnal and sub-diurnal nutations
Materias:Ciencias > Matemáticas > Geodesia
Código ID:15415
Referencias:

Bolotin, S., Bizouard, C., Loyer, S. and Capitaine N.: 1997, ‘High Frequency Variations of the Earth’s Instantaneous Angular Velocity Vector: Determination from VLBI Data analysis’,Astron. Astrophys. 317, 601.

Bretagnon, P., Rocher, P. and Simon, J. L.: 1997, ‘Theory of the Rotation of the Rigid Earth’, Astron.Astrophys. 319, 305.

Dehant, V., Arias, F., Brzezinski, A., Buffett, B., Capitaine, N., Carter,W., Defraigne, P., Dickey, J.,

Eubanks, M., Feissel, M., Fliegel, H., Fukushima, T., Forte, A., Gross, R., Hartmann, T., Herring,T., Kinoshita, H., Mathews, P. M., McCarthy, D., Melbourne, J., Molodensky, S., Roosbeek, F.,Salstein, D., Sasao, T., Soffel, M., Souchay, J., Vondrak, J., Wahr, J., Williams, J., Yatskiv, Y.and Zhu, S. Y.: 1997, ‘Considerations for the Future of Non-rigid Earth Nutation Theory’, JSR 96.

Deprit, A.: 1969, ‘Canonical Transformations Depending on a Small Parameter’, Celest. Mech. 1,12.

Hartmann, T.,Williams, J. G. and Soffel, M.: 1996, ‘Errors in J3 Part of Nutation Series’, Geophys.Res. Lett.

Hori G.: 1966, ‘Theory of General Perturbations with Unspecified Canonical Variables’, Publ. Astr.Soc. Japan 8(4), 287.

Kinoshita, H., Hori, G. and Nakai, H.: 1974, ‘Modified Jacobi Polynomials and its Applications to Expansions of Disturbing Functions’, Annals of the Tokyo Astronomical Observatory, Second series XIV, N.1.

Kinoshita, H.: 1977, ‘Theory of the Rotation of the Rigid Earth’, Celest. Mech. 15, 277.

Kinoshita, H. and Souchay, J.: 1990, ‘The Theory of the Nutation for the Rigid Earth Model at the Second Order’, Celest. Mech. 48, 187.

Seidelmann, P. K.: 1982, ‘1980 IAU Report of Nutation: The Final Report of the IAU Working Group on Nutation’, Celest. Mech. 27, 79.

Seidelmann, P. K. (ed.): 1992, ‘Explanatory Supplement to the Astronomical Almanac’, University Science Books, Mill Valley, California.

Souchay, J. and Kinoshita, H.: 1996, ‘Corrections and New Developments in Rigid Earth Nutation Theory: I. Lunisolar influence including indirect planetary effects’, Astron. Astrophys. 312,1017.

Depositado:30 May 2012 08:49
Última Modificación:06 Feb 2014 10:24

Sólo personal del repositorio: página de control del artículo