Biblioteca de la Universidad Complutense de Madrid

On Denjoy-Dunford and Denjoy-Pettis integrals.

Impacto



Gámez Merino, José Luis y Mendoza Casas, José (1998) On Denjoy-Dunford and Denjoy-Pettis integrals. Studia Mathematica, 130 (2). 115-133 . ISSN 0039-3223

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.

858kB

URL Oficial: http://matwbn.icm.edu.pl/ksiazki/sm/sm130/sm13023.pdf




Resumen

The two main results of this paper are the following: (a) If X is a Banach space and f : [a, b] --> X is a function such that x*f is Denjoy integrable for all x* is an element of X*, then f is Denjoy-Dunford integrable, and (b) There exists a Dunford integrable function f : [a, b] --> c(0) which is not Pettis integrable on any subinterval in [a, b], while integral(J)f belongs to co for every subinterval J in [a, b]. These results provide answers to two open problems left by R. A. Gordon in [4]. Some other questions in connection with Denjoy-Dunford and Denjoy-Pettis integrals are studied.


Tipo de documento:Artículo
Palabras clave:Banach-valued functions; Denjoy-Dunford integrals; Denjoy-Pettis integrals
Materias:Ciencias > Matemáticas > Análisis matemático
Código ID:15426
Referencias:

J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, 1984.

J. Diestel and J. J. Uhl, JI.) Vector Measu.res, Math. Surveys 15, Amer. Math. Soc., 1977.

J N. Dunford and J. T. S chwartz, Linear Operators, Part J, Interscience, New York, 1958.

R. A. Gordoll, The Denjoy extension Di the Bochner, Pettis, and Dunford integrals, Studia Math. 92 (1989), 73-91.

The integrals 01 Lebesgue, Denjoy, Perron and Henstock, Grad. Stud. Math. 4, Amer. Math. Soc" Providence, 1994.

J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces J, Springer, 1977.

S. Saks, Theory 01 the Integral, 2nd revised ed.) Hafner, New York, 1937.

Depositado:30 May 2012 08:07
Última Modificación:06 Feb 2014 10:24

Sólo personal del repositorio: página de control del artículo