Complutense University Library

On the Newton partially flat minimal resistance body type problems

Díaz Díaz, Jesús Ildefonso and Comte, M. (2005) On the Newton partially flat minimal resistance body type problems. Journal of the European Mathematical Society, 7 (4). pp. 395-411. ISSN 1435-9855

[img] PDF
Restricted to Repository staff only until 31 December 2020.


Official URL:

View download statistics for this eprint

==>>> Export to other formats


We study the flat region of stationary points of the functional integral(Omega) F(|del u(x)|) dx under the constraint u <= M, where Omega is a bounded domain in R-2. Here F( s) is a function which is concave for s small and convex for s large, and M > 0 is a given constant. The problem generalizes the classical minimal resistance body problems considered by Newton. We construct a family of partially flat radial solutions to the associated stationary problem when Omega is a ball. We also analyze some other qualitative properties. Moreover, we show the uniqueness of a radial solution minimizing the above mentioned functional. Finally, we consider nonsymmetric domains Omega and provide sufficient conditions which ensure that a stationary solution has a flat part.

Item Type:Article
Uncontrolled Keywords:Newton problem; obstacle problem; quasilinear elliptic operators; flat solutions
Subjects:Sciences > Mathematics > Differential geometry
Sciences > Mathematics > Functional analysis and Operator theory
ID Code:15456

Armanini, E.: Sulla superficie di minima resistenza. Ann. Mat. Pura Appl. (3) 4, 131–149 (1900) JFM 31.0709.02

Botteron, B., Marcellini, P.: A general approach to the existence of minimizers of one-dimensional non-coercive integrals of the calculus of variations. Ann. Inst. H. Poincaré 8, 197–223 (1991) Zbl 0729.49002 MR 1096604

Brezis, H.: Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert. North-Holland, Amsterdam (1973) Zbl 0252.47055 MR 0348562

Brezis, H., Kinderlehrer, D.: The smoothness of solutions to nonlinear variational inequalities. Indiana Univ. Math. J. 23, 831–844 (1974) Zbl 0278.49011 MR 0361436

Buttazzo, G., Ferone, V., Kawohl, B.: Minimum problems over sets of concave functions and related questions. Math. Nachr. 173, 71–89 (1993) Zbl 0835.49001 MR 1336954

Buttazzo, G., Kawohl, B.: On Newton's problem of minimal resistance. Math. Intelligencer 15, 7–12 (1993) Zbl 0800.49038 MR 1240664

Comte, M., Díaz, J. I.: Paper in preparation

Comte, M., Lachand-Robert, T.: Newton's problem of the body of minimal resistance under a single-impact assumption. Calc. Var. 12, 173–211 (2001) Zbl 0998.49012 MR 1821236

Eggers Jr., A. J., Resnikoff, M. M., Dennis, D. H.: Bodies of revolution having minimum drag at high supersonic airspeeds. NASA Report 1306 (1958)

Euler, L.: Principes généraux du mouvement des fluides. Mémoires de l'Académie des Sciences de Berlin 11, 217–273 (1755)

Goldstine, H. H.: A History of the Calculus of Variations from the 17th through the 19th Century. Springer, Heidelberg (1980) Zbl 0452.49002 MR 0601774

Guasoni, P.: Problemi di ottimizzazione di forma su classi di insiemi convessi. Laurea Thesis, Univ. of Pisa (1996)

Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1990) Zbl 0457.35001 MR 1786735

Lachand-Robert, T., Oudet, É.: Minimizing within convex bodies using a convex hull method. SIAM J. Optim., to appear

Miele, A.: Theory of Optimum Aerodynamic Shapes. Academic Press, London (1965) Zbl 0265.76076

Newton, I.: Philosophiae Naturalis Principia Mathematica. (1686)

Wagner, A.: A remark on Newton's resistance formula. Z. Angew. Math. Mech. ZAMM 79, 423–427 (1999) Zbl 0926.76101 MR 1690760

Deposited On:01 Jun 2012 10:50
Last Modified:06 Feb 2014 10:25

Repository Staff Only: item control page