Díaz Díaz, Jesús Ildefonso y Comte, M. (2005) On the Newton partially flat minimal resistance body type problems. Journal of the European Mathematical Society, 7 (4). pp. 395-411. ISSN 1435-9855
![]() |
PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020. 166kB |
URL Oficial: http://www.ann.jussieu.fr/~comte/pdf/ComteDiaz8.pdf
URL | Tipo de URL |
---|---|
http://www.ems.org/ | Institución |
Resumen
We study the flat region of stationary points of the functional integral(Omega) F(|del u(x)|) dx under the constraint u <= M, where Omega is a bounded domain in R-2. Here F( s) is a function which is concave for s small and convex for s large, and M > 0 is a given constant. The problem generalizes the classical minimal resistance body problems considered by Newton. We construct a family of partially flat radial solutions to the associated stationary problem when Omega is a ball. We also analyze some other qualitative properties. Moreover, we show the uniqueness of a radial solution minimizing the above mentioned functional. Finally, we consider nonsymmetric domains Omega and provide sufficient conditions which ensure that a stationary solution has a flat part.
Tipo de documento: | Artículo |
---|---|
Palabras clave: | Newton problem; obstacle problem; quasilinear elliptic operators; flat solutions |
Materias: | Ciencias > Matemáticas > Geometría diferencial Ciencias > Matemáticas > Análisis funcional y teoría de operadores |
Código ID: | 15456 |
Depositado: | 01 Jun 2012 10:50 |
Última Modificación: | 06 Feb 2014 10:25 |
Descargas en el último año
Sólo personal del repositorio: página de control del artículo