Biblioteca de la Universidad Complutense de Madrid

On the Haim Brezis pioneering contributions on the location of free boundaries


Díaz Díaz, Jesús Ildefonso (2005) On the Haim Brezis pioneering contributions on the location of free boundaries. In Elliptic and Parabolic Problems: A Special Tribute to the Work of Haim Brezis. Progress in nonlinear differential equations and their applications , 63 (63). Birkhäuser, Basel, pp. 217-234. ISBN 3-7643-7249-4

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.


URL Oficial:

Tipo de documento:Sección de libro
Información Adicional:

5th European Conference on Elliptic and Parabolic Problems -A Special Tribute to the Work of Haim Brezis. Gaeta. 2004

Palabras clave:strong maximum principle; variational-inequalities; qualitative properties; solid friction; support; equations; flow; oscillator; diffusion; existence.
Materias:Ciencias > Matemáticas > Análisis funcional y teoría de operadores
Código ID:15458

L. Alvarez and J.I. Díaz: The waiting time property for parabolic problems trough the nondiffusion of the support for the stationary problems, Rev. R. Acad. Cien. Serie A Matem. (RACSAM) 97 (2003), 83–88.

H. Amann and J.I. Díaz, A note on the dynamics of an oscillator in the presence of strong friction, Nonlinear Anal. 55 (2003), 209–216.

F.Andreu, V. Caselles, J.I. Díaz and J.M. Mazón, Some Qualitative Properties for the Total Variation, Journal of Functional Analysis, 188, 516–547, 2002.

S.N. Antontsev, J.I. Díaz and S.I. Shmarev, Energy Methods for Free Boundary Problems: Applications to Nonlinear PDEs and Fluid Mechanics, Progress in Nonlinear Differential Equations and Their Applications, 48, Birkhäuser, Boston, 2002.

J. Auchmuty and R. Beals, Variational solutions of some nonlinear free boundary problems, Arch. Rat. Mech. Anal. 43, (1971), 255–271

C. Baiocchi, Su un problema di frontiera libera connesso a questioni di idraulica, Annali di Mat. Pura ed Appl. 92 (1972), 107–127.

A. Bamberger and H. Cabannes, Mouvements d’une corde vibrante soumise à un frottement solide, C. R. Acad. Sc. Paris, 292 (1981), 699–705.

C. Bandle, R.P. Sperb and I. Stakgold, Diffusion and reaction with monotone kinetics, Nonlinear Analysis, TMA, 8, (1984), 321–333.

C. Bandle and J.I. Díaz, Inequalities for the Capillary Problem with Volume Constraint.In Nonlinear Problems in Applied Mathematics: In Honor of Ivar Stakgold on his 70th Birthday (T.S. Angell et al. ed.), SIAM, Philadelphia, 1995.

Ph. Benilan, H. Brezis and M.G. Crandall, A semilinear equation in L1(RN), Ann.Scuola Norm. Sup. Pisa 4, 2 (1975), 523–555.

A. Bensoussan and J.L. Lions, On the support of the solution of some variational inequalities of evolution, J. Math. Soc. Japan, 28 (1976), 1–17.

A. Bensoussan, H. Brezis and A. Friedman, Estimates on the free boundary for quasi variational inequalities. Comm. PDEs 2 (1977), no. 3, 297–321.

H. Berestycki and H. Brezis, On a free boundary problem arising in plasma physics, Nonlinear Analysis, 4 (1980), 415–436.

A. Berger, H. Brezis and J.C.W. Rogers, A numerical method for solving the problem RAIRO Anal. Num´er., 13 (1979), no. 4, 297–312.

L. Berkowitz and H. Pollard, A non classical variational problem arising from an optimal filter problem, Arch. Rat. Mech. Anal., 26 (1967), 281–304.

L. Bers, Mathematical aspects of subsonic and transient gas dynamics, Chapman and Hall, London, 1958.

J.F. Bourgat and G. Duvaut, Numerical analysis of flow with or without wake past a symmetric two-dimensional profile without incidence, Int. Journal for Num. Math. In Eng. 11 (1977), 975–993.

H. Brezis, Solutions of variational inequalities with compact support. Uspekhi Mat. Nauk., 129, (1974) 103–108.

H. Brezis, Solutions à support compact d’inequations variationelles, Séminaire Leray, Collège de France, 1973–74, pp. III.1–III.6

H. Brézis, A new method in the study of subsonic flows, In, Partial Differential equations and related topics, J. Goldstein, ed., Lecture Notes in Math. Vol. 446, Springer, 1977, 50–64.

H. Brézis, Problèmes unilatéraux, J. Math. Pures Appl. 51, (1972), 1–168.

H. Brézis, Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam 1972.

H. Brézis, Monotone operators, nonlinear semigroups and applications. Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 2, Canad. Math. Congress, Montreal, Que., 1975, 249–255.

H. Brezis, The dam problem revisted, in Free Boundary Problems, Proc. Symp. Montecatini, A. Fasano and M. Primicerio eds., Pitman, 1983.

H. Brezis and J.I. Diaz (eds.), Mathematics and Environment, Proceedings of the meeting between the Acad´emie des Sciences and the Real Academia de Ciencias, Paris, 23–24 May, 2002. Special volume of Rev. R. Acad. Cien.Serie A Matem.(RACSAM) 96, no 2, (2003).

H. Brezis and G. Duvaut, Écoulements avec sillages autour d’un profil symmétrique sans incidence, C.R. Acad. Sci., 276 (1973), 875–878.

H. Brezis and A. Friedman, Estimates on the support of solutions of parabolic variational inequalities, Illinois J. Math., 20 (1976), 82–97.

H. Brezis, D. Kinderlehrer and G. Stampacchia, Sur une nouvelle formulation du problème de l’écoulement à travers une digue, C.R. Acad. Sci. Paris, 287 (1978),711–714.

H. Brezis and E. Lieb, Minimum action solutions of some vector field equations, Comm. Math. Phys., 96 (1984), 97–113.

H. Brezis and L. Nirenberg, Removable singularities for nonlinear elliptic equations, Topol. Methods Nonlinear Anal., 9 (1997), 201–219.

H. Brezis and G. Stampacchia, Une nouvelle méthode pour l’étude d’écoulements stationnaires, C. R. Acad. Sci., 276 (1973), 129–132.

H. Brezis and G. Stampacchia, The Hodograph Method in Fluid-Dynamics in the Light of Variational Inequalities, Arch. Rat. Mech.Anal., 61 (1976), 1–18.

J. Bruch and M. Dormiani, Flow past a symmetric two-dimensional profile with a wake in a channel, in Nonlinear Problems, vol. 2, C. Taylor, O.R. Oden, E. Hinton eds., Pineridge Press, Swanzea, UK, 1987.

H. Cabannes, Mouvement d’une corde vibrante soumise a un frottement solide, C. R. Acad. Sci. Paris Ser. A-B 287(1978), 671–673.

J. Carrillo and M. Chipot, On the Dam Problem, J. Diff. Eq. 45 (1982), 234–271.

G. Díaz, J.I. Díaz, Finite extinction time for a class of non linear parabolic equations, Comm. in Partial Differential Equations, 4 (1979) No 11, 1213–1231.

J.I. Díaz, Técnica de supersoluciones locales para problemas estacionarios no lineales. Aplicación al estudio de flujos subsónicos. Memorias de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie de Ciencias Exactas, Tomo XVI, 1982.

J.I. Díaz, Nonlinear Partial Differential Equations and Free Boundaries. Research Notes in Mathematics, 106, Pitman, London 1985.

J.I. Díaz, Anulación de soluciones para operadores acretivos en espacios de Banach. Aplicaciones a ciertos problemas parabólicos no lineales. Rev. Real. Acad. Ciencias

Exactas, Físicas y Naturales de Madrid, Tomo LXXIV (1980), 865–880.

J.I. Díaz, Special finite time extinction in nonlinear evolution systems: dynamic boundary conditions and Coulomb friction type problems. To appear in Nonlinear Elliptic and Parabolic Problems: A Special Tribute to the Work of Herbert Amann,Zurich, June, 28–30, 2004 (M. Chipot, J. Escher eds.).

J.I. Díaz and A. Dou, Sobre flujos subsónicos alrededor de un obstáculo simétrico. Collectanea Mathematica, (1983), 142–160.

J.I. Díaz and J. Hernández, On the existence of a free boundary for a class of reaction diffusion systems, SIAM J. Math. Anal. 15,No 4, (1984), 670–685.

J.I. Díaz and M.A. Herrero, Proprietés de support compact pour certaines équations elliptiques et paraboliques non linéaires. C.R. Acad. Sc. Paris, 286, S´erie I, (1978), 815–817.

J.I. Díaz and M.A. Herrero, Estimates on the support of the solutions of some non linear elliptic and parabolic problems. Proceedings of the Royal Society of Edinburgh, 98A (1981), 249–258.

J.I. Díaz and A. Liñán, On the asymptotic behavior of solutions of a damped oscillator under a sublinear friction term: from the exceptional to the generic behaviors. In Proceedings of the Congress on non linear Problems (Fez, May 2000), Lecture Notes in Pure and Applied Mathematics (A. Benkirane and A. Touzani. eds.), Marcel Dekker, New York, 2001, 163–170.

J.I. Díaz and A. Liñán, On the asymptotic behaviour of solutions of a damped oscillator under a sublinear friction term, Rev. R. Acad. Cien. Serie A Matem. (RACSAM), 95(2001), 155–160.

J.I. Díaz and V. Millot, Coulomb friction and oscillation: stabilization in finite time for a system of damped oscillators. CD-Rom Actas XVIII CEDYA / VIII CMA, Servicio de Publicaciones de la Univ. de Tarragona 2003.

J.I. Díaz and J. Mossino, Isoperimetric inequalities in the parabolic obstacle problems. Journal de Mathématiques Pures et Appliqueés, 71 (1992), 233–266.

J.I. Díaz and J.M. Rakotoson, On a nonlocal stationary free boundary problem arising in the confinement of a plasma in a Stellarator geometry, Archive for Rational Mechanics and Analysis, 134 (1996), 53–95.

J.I. Díaz and L. Veron, Existence, uniqueness and qualitative properties of the solutions of some first order quasilinear equations, Indiana University Mathematics Journal, 32, No3, (1983), 319–361.

C. Ferrari and F. Tricomi, Aerodinamica transonica, Cremonese, Rome,1962.

A. Friedman, Variational Principles and Free Boundary Problems, Wiley, New York, 1982.

R. Glowinski, J.L. Lions and R. Tremolieres, Analyse Numérique des Inéquations Variationnelles, 2 volumes, Dunod, Par´ıs, 1976.

A. Haraux, Comportement à l’infini pour certains systèmes dissipatifs non linéaires, Proc. Roy. Soc. Edinburgh, Sect. A 84A (1979), 213–234.

R.A. Hummel, The Hodograph Method for Convex Profiles, Ann. Scuola Norm. Sup. Pisa 9 IV, (1982), 341–363.

D. Kinderlehrer and G. Stampacchia: An introduction to variational inequalities and their applications. Academic Press, New York 1980 (SIAM, Philadelphia, PA, 2000).

P. Pucci and J. Serrin, The strong maximum principle revisted, J. Diff. Equations, 196 (2004), 1–66.

J.W. Rayleigh, B. Strutt, The theory of sound, Dover Publications, New York, 2d ed., 1945.

R. Redheffer, On a nonlinear functional of Berkovitz and Pollard, Arch. Rat. Mech. Anal. 50 (1973), 1–9.

B. Riemann: Über die Fläche vom kleinsten Inhalt bei gegebener Begrenzung, Abh. Königl. Ges. d. Wiss. Göttingen, Mathem. Cl. 13 (1867), 3–52.

J.F. Rodrigues, Obstacle Problems in Mathematical Physics, North-Holland, Amsterdam, 1987.

E. Sandier and S. Serfaty, A rigorous derivation of a free-boundary problem arising in superconductivity, Ann. Sci. Ecole Norm. Sup. 4, 33, (2000), 561–592.

L. Santos, Variational convergences of a flow with a wake in a channel past a profile, Bolletino U.M.I., 7, 2-B,(1988), 788–792.

L. Santos, Variational limit of compressible to incompressible fluid. In Energy Methods in Continuum Mechanics, S.N. Antontsev, J.I. Díaz and S.I. Shmarev eds., Kluwer, Dordrecht, 1996, 126–144.

J. Serrin: Mathematical Principles of Classical Fluid Mechanics, in Handbuch der Physik, 8, Springer-Verlag, Berlin 1959, 125–263.

E. Shimborsky, Variational Methods Applied to the Study of Symmetric Flows in Laval Nozzles, Comm. PDEs, 4 (1979), 41–77.

E. Shimborsky, Variational Inequalities arising in the theory of two-dimensional potential flows, Nonlinear Anal., 5 (1981), 434–444.

G. Stampacchia, Le disequazioni variazionali nella dinamica dei fluidi, In Metodi Valuativi nella fisica-matem´atica, Accad. Naz. Lincei, Anno CCCLXXII, Quaderno 217, (1975), 169–180.

F. Tomarelli, Hodograph method and variational inequalities in fluid-dynamics, Inst. Nat. Alta Mat. Vol I-II, Roma, 1980, 565–574.

J.L. Vázquez: A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12(1984), 191–202.

J.L. Vázquez, The nonlinearly damped oscillator, ESAIM Control Optim. Calc. Var. 9 (2003), 231–246.

Depositado:01 Jun 2012 10:31
Última Modificación:01 Jun 2012 10:31

Sólo personal del repositorio: página de control del artículo