Biblioteca de la Universidad Complutense de Madrid

Positivity for large time of solutions of the heat equation: The parabolic antimaximum principle

Impacto



Díaz Díaz, Jesús Ildefonso y Fleckinger-Pellé, Jacqueline (2004) Positivity for large time of solutions of the heat equation: The parabolic antimaximum principle. Discrete and Continuous Dynamical Systems. Series A., 10 (1-2). pp. 193-200. ISSN 1078-0947

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.

152kB

URL Oficial: http://aimsciences.org/journals/pdfs.jsp?paperID=139&mode=full




Resumen

We study the positivity, for large time, of the solutions to the heat equation Q(a) (f,u(0)): [GRAPHIC] where Q is a smooth bounded domain in RN and a C R. We obtain some sufficient conditions for having a finite time t(p) > 0 (depending on a and on the data u(0) and f which are not necessarily of the same sign) such that u(t, x) > 0 For Allt > t(p), a.e.x is an element of Omega.


Tipo de documento:Artículo
Palabras clave:maximum and antimaximum principle; heat equation; parabolic problems
Materias:Ciencias > Matemáticas > Geometría diferencial
Ciencias > Matemáticas > Ecuaciones diferenciales
Código ID:15471
Referencias:

Amann, H., Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Review, 18, N. 4, 620–709, (1976).

Antontsev, S.N., Diaz, J.I., Shmarev, S.I. Energy Methods for free bounday problems. Applications to nonlinear PDEs and Fluid Mechanics, Series Progress in Nonlinear Differential Equations and Their Applications, No. 48, Birkäuser, Boston, (2002).

Bertsch, M., Peletier, L.A., The asymptotic profile of solutions of a degenerate diffusion equation, Arch. Rat. Mech. Anal. 91, 207–229, (1985).

Ph. Clément, L. A. Peletier, An anti-maximum principle for second order elliptic operators, J. Differential Equations 34, 218–229, (1979).

Díaz, J.I., Morel, J.M., Sur les solutions de l'équation de la chaleur, unpublished manuscript, (1986).

Díaz, J.I., de Thélin, F., On a nonlinear parabolic problem arising in some models related to turbulent flows, SIAM J. Math. Anal., 25, 4, 1085–1111, (1994).

Fleckinger, J., Gossez, J.P., Takáč, P., de Thélin, F., Non existence of solutions and an antimaximum principle for cooperative systems with the p - Laplacian, Math. Nachrichten, 194, 49–78, (1998).

Gmira, A., Véron, L., Asymptotic Behaviour of the Solution of a Semilinear Parabolic Equation, Monatsh.Math. 94, 299–311, (1982).

Sattinger, D., Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math J., 21, 979–1000, (1972).

Depositado:04 Jun 2012 08:40
Última Modificación:06 Feb 2014 10:25

Sólo personal del repositorio: página de control del artículo