Biblioteca de la Universidad Complutense de Madrid

On Orderings In Real Surfaces

Impacto

Gamboa, J. M. y Alonso García, María Emilia y Ruiz Sancho, Jesús María (1985) On Orderings In Real Surfaces. Journal of Pure and Applied Algebra , 36 (1). pp. 1-14. ISSN 0022-4049

URL Oficial: http://www.sciencedirect.com/science/journal/00224049




Resumen

It is well-known that if C is an algebraic curve over the real closed field R and is a total ordering of the function field R(C) of C then there is a semi-algebraic embedding w : (0, 1) ! C such that f 2 R(C) is positive with respect to if and only if there is some t 2 R, 0 < t such that fw is defined and positive on (0,t).
In the present paper it is shown that the total orderings of the function field of an algebraic surface over the
field R of real numbers admits a similar geometric description.
Let V be an irreducible algebraic surface over R embedded in some Rn. Using a discussion of the orderings of the meromorphic function germs of an irreducible analytic surface germ the following is proved: If is a total ordering of R(V ) then there is an analytic map c : (0, 1) ! V such that f 2 R(V ) is positive with respect to if and only if fc is defined and positive on (0,t) for some 0 < t 2 R.


Tipo de documento:Artículo
Palabras clave:total orderings of the function field of an algebraic surface; meromorphic function germs
Materias:Ciencias > Matemáticas > Geometria algebraica
Código ID:15490
Depositado:06 Jun 2012 07:40
Última Modificación:02 Mar 2016 14:26

Sólo personal del repositorio: página de control del artículo