Biblioteca de la Universidad Complutense de Madrid

Polynomial topologies on Banach spaces

Impacto

Garrido, M. Isabel y Jaramillo Aguado, Jesús Ángel y Llavona, José G. (2005) Polynomial topologies on Banach spaces. Topology and its Applications, 153 . pp. 854-867. ISSN 0166-8641

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.

134kB

URL Oficial: http://www.sciencedirect.com/science/article/pii/S0166864105000167




Resumen

On every real Banach space X we introduce a locally convex topology tau(p), canonically associated to the weak-polynomial topology w(P). It is proved that tau(p) is the finest locally convex topology on X which is coarser than w(P). Furthermore, the convergence of sequences is considered, and sufficient conditions on X are obtained under which the convergent sequences for w(P) and for tau(P) either coincide with the weakly convergent sequences (when X has the Dunford-Pettis property) or coincide with the norm-convergent sequences (when X has nontrivial type).


Tipo de documento:Artículo
Palabras clave:Banach space; Polynomial topologies; Weakly convergent sequences; Dunford–Pettis property
Materias:Ciencias > Matemáticas > Topología
Código ID:15509
Referencias:

R. Alencar, R. Aron, S. Dineen, A reflexive space of holomorphic functions in infinitely many variables,Proc. Amer. Math. Soc. 90 (1984) 407–411.

R. Aron, Y.S. Choi, J.G. Llavona, Estimates by polynomials, Bull. Austral. Math. Soc. 52 (1995) 475–486.

R. Aron, B. Cole, T.W. Gamelin, Spectra of algebras of analytic functions on a Banach space, J. Reine Angew. Math. 415 (1991) 51–93.

R. Aron, C. Hervés, M. Valdivia, Weakly continuous mappings on Banach spaces, J. Funct. Anal. 52 (1983)189–203.

R. Aron, J.B. Prolla, Polynomial approximation of differentiable functions on Banach spaces, J. Reine Angew. Math. 313 (1980) 195–216.

P. Biström, J.A. Jaramillo, M. Lindström, Polynomial compactness in Banach spaces, Rocky Mountain J.Math. 28 (1998) 1203–1226.

R. Bonic, J. Frampton, Smooth functions on Banach manifolds, J. Math. Mech. 15 (1966) 877–898.

T. Carne, B. Cole, T. Gamelin, A uniform algebra of analytic functions on a Banach space, Trans. Amer.Math. Soc. 314 (1989) 639–659.

J.M.F. Castillo, R. García, R. Gonzalo, Banach spaces in which all multilinear forms are weakly sequentially continuous, Studia Math. 136 (1999) 121–145.

A.M. Davie, T.W. Gamelin, A theorem of polynomial-star approximation, Proc. Amer. Math. Soc. 106 (1989) 351–358.

S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer, London, 1999.

J. Farmer, W.B. Johnson, Polynomial Schur and polynomial Dunford–Pettis properties in Banach spaces,Contemp. Math. 144 (1993) 95–105.

J. Ferrera, J. Gómez, J.G. Llavona, On completion of spaces of weakly continuous functions, Bull. London Math. Soc. 15 (1983) 260–264.

K. Floret, Weakly Compact Sets, Lecture Notes in Math., vol. 801, Springer, Berlin, 1980.

M. González, J. Gutiérrez, J.G. Llavona, Polynomial continuity on 1, Proc. Amer. Math. Soc. 125 (1997)1349–1353.

R. Gonzalo, J.A. Jaramillo, Separating polynomials on Banach spaces, Extracta Math. 12 (1997) 145–164.

J. Gutiérrez, J.G. Llavona, Polynomial continuous operators, Israel J. Math. 120 (1997) 179–187.

P. Hájek, J.G. Llavona, P -continuity on classical Banach spaces, Proc. Amer. Math. Soc. 128 (2000) 827–830.

J.A. Jaramillo, A. Prieto, Weak-polynomial convergence on a Banach space, Proc. Amer. Math. Soc. 118 (1993) 463–468.

J. Lindenstraus, L. Tzafriri, Classical Banach Spaces, II, Springer, Berlin, 1979.

J. Mujica, Complex Analysis in Banach Spaces, North-Holland Math. Stud., vol. 120, North-Holland, Amsterdam,1986.

R. Ryan, Dunford–Pettis properties, Bull. Acad. Polon. Sci. 27 (1979) 373–379.

Depositado:07 Jun 2012 08:31
Última Modificación:27 May 2016 14:31

Sólo personal del repositorio: página de control del artículo