Biblioteca de la Universidad Complutense de Madrid

A Banach-Stone theorem for uniformly continuous functions

Impacto

Garrido, M. Isabel y Jaramillo Aguado, Jesús Ángel (2000) A Banach-Stone theorem for uniformly continuous functions. Monatshefte für Mathematik, 131 (3). pp. 189-192. ISSN 0026-9255

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.

61kB

URL Oficial: http://www.springerlink.com/content/jgr5jgllju8btpe7/fulltext.pdf




Resumen

In this note we prove that the uniformity of a complete metric space X is characterized by the vector lattice structure of the set U(X) of all uniformly continuous real functions on X.


Tipo de documento:Artículo
Palabras clave:Uniformly continuous real functions; lattice homomorphisms; Banach-Stone theorems
Materias:Ciencias > Matemáticas > Topología
Código ID:15531
Referencias:

Araujo J, Font JJ (2000) Linear isometries on subalgebras of uniformly continuous functions.Proc Edinburgh Math Soc 43: 139±147

Efremovich VA (1951) The geometry of proximity I. Math Sbor 31: 189±200

Engelking R (1977) General Topology. Warsaw: PWN-Polish Scienti®c

Gillman L, Jerison M (1976) Rings of continuous functions. New York: Springer

HernaÂndez S (1999) Uniformly continuous mappings de®ned by isometries of spaces of bounded uniformly continuous functions. Topology Atlas No 394

Hewitt E (1948) Rings of real-valued continuous functions I. Trans Amer Math Soc 64: 54±99

Isbell JR (1958) Algebras of uniformly continuous functions. Ann of Math 68: 96±125

Lacruz M, Llavona JG (1997) Composition operators between algebras of uniformly continuous functions. Arch Math 69: 52±56

Shirota T (1952) A generalization of a theorem of I. Kaplansky. Osaka Math J 4: 121±132

Depositado:08 Jun 2012 09:24
Última Modificación:27 May 2016 13:50

Sólo personal del repositorio: página de control del artículo