Complutense University Library

Homorphisms on function algebras

Garrido Carballo, M. Isabel and Gómez Gil, Javier and Jaramillo Aguado, Jesús Ángel (1994) Homorphisms on function algebras. Canadian Journal of Mathematics-Journal Canadien de Mathématiques, 46 (4). pp. 734-745. ISSN 0008-414X

[img] PDF
Restricted to Repository staff only until 2020.

1MB

Official URL: http://cms.math.ca/cjm/v46/

View download statistics for this eprint

==>>> Export to other formats

Abstract

Let A be an algebra of continuous real functions on a topological space X. We study when every nonzero algebra homomorphism phi:A --> R is given by evaluation at some point of X. In the case that A is the algebra of rational functions (or real-analytic functions, or C(m)-functions) on a Banach space, we provide a positive answer for a wide class of spaces, including separable spaces and super-reflexive spaces (with nonmeasurable cardinal).

Item Type:Article
Uncontrolled Keywords:Algebra of continuous real functions; separable spaces; super-reflexive spaces
Subjects:Sciences > Mathematics > Topology
ID Code:15532
References:

F. W. Anderson, Approximation in systems of real-valued continuous functions, Trans. Amer. Math. Soc.103(1962), 249-271.

J. Arias-de-Reyna, A real-valuedhomomorphism on algebras of differentiablefunctions, Proc. Amer. Math.Soc 104(1988), 1054-1058.

R. M. Aron, Compact polynomials and compact differentiable mappings between Banach spaces, Sém.P. Lelong 1974/75, L.N.M. 524, Springer Verlag, 1976, 231-222.

P. Bistrom, S. Bjon and M. Lindstrom, Remarks on homomorphisms on certain subalgebras of C{X), Math.Japon. 36(1991).

Homomorphisms on some function algebras, Monatsh. Math. 111(1991), 93-97.

Function algebras on which homomorphisms are point evaluations on sequences, Manuscripta Math. 73(1991), 179-185.

P. Bistrôm and M. Lindstrom, Homomorphisms on C°°(E) and C°°-bounding sets, Monatsh. Math. 115 (1993), 257-266.

H. H. Corson, The weak topology of a Banach space, Trans. Amer. Math. Soc. 101(1961), 1-15.

J. Diestel, Geometry of Banach spaces. Selected topics, L.N.M. 485, Springer Verlag.

G. A. Edgar, Measurability in a Banach space, II, Indiana Univ. Math. J. 28(1979), 559-579.

R. Engelking, General Topology, Monograf. Math. Warsaw, (1977).

M. I. Garrido and F Montalvo, Uniform approximation theorems for real-valued continuous functions,Topology Appl. 45(1992), 145-155.

L. Gillman and M. Jerison, Rings of continuous functions, Princeton, New Jersey, 1960.

J. Gomez and J. G. Llavona, Multiplicative functional on function algebras, Rev. Mat. Univ. Complutense Madrid 1(1988), 19-22.

A. Hirschowitz, Sur le non-plongementdes variétés analytiques banachiques réeles, C. R. Acad. Sci. Paris 269(1969), 844-846.

J. A. Jaramillo, Algebras defunciones continuas y diferenciables. Homomorfismos e interpolaciôn, Thesis.Univ. Complutense, Madrid, 1987.

Multiplicativejunctionals on algebras of differentiable functions, Arch. Math. 58( 1992), 384-387.

J. A. Jaramillo and J. G. Llavona, On the spectrum ofCxb{E), Math. Ann. 287(1990), 531-538.

T. Jech, Set Theory, Academic Press, 1978.

K. John, H. Torunczyk and V. Zizler, Uniformly smooth partitions of unity on super reflexive Banach spaces,Studia Math. 70(1981), 129-137.

A. Kriegl, P. Michor and W. Schachermayer, Characters on algebras of smooth functions, Ann. Global Anal. Geom. 7(1989), 85-92.

E.A. Michael, Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc. 11(1952).

Deposited On:08 Jun 2012 09:19
Last Modified:06 Feb 2014 10:26

Repository Staff Only: item control page