Biblioteca de la Universidad Complutense de Madrid

Uniform density and m-density for subrings of C(X)

Impacto

Garrido, M. Isabel y Montalvo, Francisco (1994) Uniform density and m-density for subrings of C(X). Bulletin of the Australian Mathematical Society, 49 (3). pp. 427-432. ISSN 0004-9727

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.

236kB

URL Oficial: http://www.journals.cambridge.org/action/displayJournal?jid=BAZ




Resumen

This paper deals with the equivalence between u-density and m-density for the subrings of C(X). It was proved by Kurzweil that such equivalence holds for those subrings that are closed under bounded inversion. Here an example is given in C(N) of a u-dense subring that is not m-dense. It is deduced that the two types of density coincide only in the trivial case where these topologies are the same, that is, if and only if X is a pseudocompact space.


Tipo de documento:Artículo
Palabras clave:U-density; m-density
Materias:Ciencias > Matemáticas > Topología
Código ID:15537
Referencias:

F.W. Anderson, 'Approximation in systems of real-valued continuous functions', Trans.Amer. Math. Soc. 103 (1962), 249-271.

M.I. Garrido and F. Montalvo, 'On uniformly dense and m-dense subsets of C(X)\Extracta Math. 6 (1991), 15-16.

M.I. Garrido and F. Montalvo, 'Uniform approximation theorems for real-valued continuous functions', Topology Appl. 45 (1992), 145-155.

L. Gillman and M. Jerison, Rings of continuous functions (Springer-Verlag, Berlin, Heidelberg,New York, 1976).

E. Hewitt, 'Rings of real-valued continuous functions. I', Trans. Amer. Math. Soc. 64 (1948), 45-99.

J. Kurzweil, 'On approximation in real Banach spaces', Studia Math. 14 (1954), 214-231.

Depositado:08 Jun 2012 09:15
Última Modificación:27 May 2016 14:55

Sólo personal del repositorio: página de control del artículo