Biblioteca de la Universidad Complutense de Madrid

A Statistical Approach to Test Stochastic and Probabilistic Systems


García Merayo, Mercedes y Hwang, Iksoon y Nuñez García, Manuel y Cavalli, Ana (2009) A Statistical Approach to Test Stochastic and Probabilistic Systems. Formal methods and software engineering proceedings, 5885 . pp. 186-205. ISSN 0302-9743

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.


URL Oficial:


In this paper we introduce a formal framework to test systems where non-deterministic decisions are probabilistically quantified and temporal information is defined by using random variables. We define an appropriate extension of the classical finite state machines formalism,
widely used in formal testing approaches, to define the systems that we are interested in. First, we define a conformance relation to establish with respect to a given specification, what a good implementation is. In order to decide whether a system is conforming, we apply different
statistic techniques to determine whether the (unknown) probabilities and random variables governing the behaviour of the implementation match the (known) ones of the specification. Next, we introduce a notion of test case. Finally, we give an alternative characterization of the
previous conformance relation based on how a set of test is passed by the implementation.

Tipo de documento:Artículo
Información Adicional:

11th International Conference on Formal Engineering Methods.
Rio de Janeiro, BRAZIL. DEC 09-12, 2009.

Palabras clave:Finite-state machines; Interval estimation; Algebraic-theory; Test selection; Model; Time; Computer Science; Theory & Methods
Materias:Ciencias > Matemáticas > Investigación operativa
Código ID:15545

Agresti, A., Coull, B.A.: Approximate is better than exact for interval estimation of binomial proportions. The American Statistician 52(2), 119–126 (1998)

Alur, R., Courcoubetis, C., Yannakakis, M.: Distinguishing tests for nondeterministic and probabilistic machines. In: 27th ACM Symp. on Theory of Computing, STOC 1995, pp. 363–372. ACM Press, New York (1995)

Bernardo, M., Gorrieri, R.: A tutorial on EMPA: A theory of concurrent processes with nondeterminism, priorities, probabilities and time. Theoretical Computer Science 202(1-2), 1–54 (1998)

Bravetti, M., Gorrieri, R.: The theory of interactive generalized semi-Markov processes. Theoretical Computer Science 282(1), 5–32 (2002)

Brinksma, E., Tretmans, J.: Testing transition systems: An annotated bibliography. In: Cassez, F., Jard, C., Rozoy, B., Dermot, M. (eds.) MOVEP 2000. LNCS, vol. 2067, pp. 187–195. Springer, Heidelberg (2001)

Brown, L.D., Cai, T.T., Dasgupta, A.: Interval estimation for a binomial proportion. Statistical Science 16, 101–133 (2001)

Cazorla, D., Cuartero, F., Valero, V., Pelayo, F.L., Pardo, J.J.: Algebraic theory of probabilistic and non-deterministic processes. Journal of Logic and Algebraic Programming 55(1–2), 57–103 (2003)

Cheung, L., Stoelinga, M., Vaandrager, F.: A testing scenario for probabilistic processes. Journal of the ACM 54(6), Article 29 (2007)

Cleaveland, R., Dayar, Z., Smolka, S.A., Yuen, S.: Testing preorders for probabilistic processes. Information and Computation 154(2), 93–148 (1999)

van Glabbeek, R., Smolka, S.A., Steffen, B.: Reactive, generative and stratified models of probabilistic processes. Information and Computation 121(1), 59–80 (1995)

Hierons, R.M.: Testing from a non-deterministic finite state machine using adaptive state counting. IEEE Transactions on Computers 53(10), 1330–1342 (2004)

Hierons, R.M., Merayo, M.G.: Mutation testing from probabilistic finite state machines. In: 3rdWorkshop on Mutation Analysis, Mutation 2007, pp. 141–150. IEEE Computer Society Press, Los Alamitos (2007)

Hierons, R.M., Merayo, M.G.: Mutation testing from probabilistic and stochastic finite state machines. Journal of Systems and Software (in press, 2009)

Hierons, R.M., Merayo, M.G., N´u˜nez, M.: Testing from a stochastic timed system with a fault model. Journal of Logic and Algebraic Programming 78(2), 98–115 (2009)

Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)

Hwang, I., Cavalli, A.: Testing from a probabilistic FSM using interval estimation. Technical Report 09004LOR, TELECOM & Management SudParis (2009)

Hwang, I., Kim, T., Hong, S., Lee, J.: Test selection for a nondeterministic FSM. Computer Communications 24(12), 1213–1223 (2001)

Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification of real-time systems with discrete probability distributions. Theoretical Computer Science 282(1), 101–150 (2002)

Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Information and Computation 94(1), 1–28 (1991)

Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines: A survey. Proceedings of the IEEE 84(8), 1090–1123 (1996)

López, N., Núñez, M.: A testing theory for generally distributed stochastic processes. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 321–335. Springer, Heidelberg (2001)

López, N., Núñez, M., Rodríguez, I.: Specification, testing and implementation relations for symbolic-probabilistic systems. Theoretical Computer Science 353(1- 3), 228–248 (2006)

Luo, G.L., von Bochmann, G., Petrenko, A.: Test selection based on communicating nondeterministic finite-state machines using a generalized Wp-method. IEEE Transactions on Software Engineering 20(2), 149–161 (1994)

Markowitch, O., Roggeman, Y.: Probabilistic non-repudiation without trusted third party. In: 2nd Conf. on Security in Communication Network (1999)

Merayo, M.G., Núñez, M., Rodríguez, I.: Formal testing from timed finite state machines. Computer Networks 52(2), 432–460 (2008)

Nicollin, X., Sifakis, J.: An overview and synthesis on timed process algebras. In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 376–398. Springer, Heidelberg (1992)

Núñez, M.: Algebraic theory of probabilistic processes. Journal of Logic and Algebraic Programming 56(1-2), 117–177 (2003)

Petrenko, A.: Fault model-driven test derivation from finite state models: Annotated bibliography. In: Cassez, F., Jard, C., Rozoy, B., Dermot, M. (eds.) MOVEP 2000. LNCS, vol. 2067, pp. 196–205. Springer, Heidelberg (2001)

Petrenko, A., Yevtushenko, N., von Bochmann, G.: Testing deterministic implementations from their nondeterministic FSM specifications. In: 9th IFIPWorkshop on Testing of Communicating Systems, IWTCS 1996, pp. 125–140. Chapman & Hall, Boca Raton (1996)

Reed, G.M., Roscoe, A.W.: A timed model for communicating sequential processes. Theoretical Computer Science 58, 249–261 (1988)

Rodríguez, I., Merayo, M.G., Núñez, M.: HOTL: Hypotheses and observations testing logic. Journal of Logic and Algebraic Programming 74(2), 57–93 (2008)

Ross, S.M.: Introduction to Probability and Statistics for Engineers and Scientists. John Wiley & Sons, Chichester (1987)

Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nordic Journal of Computing 2(2), 250–273 (1995)

Uyar, M.Ü, Batth, S.S., Wang, Y., Fecko, M.A.: Algorithms for modeling a class of single timing faults in communication protocols. IEEE Transactions on Computers 57(2), 274–288 (2008)

Depositado:08 Jun 2012 08:50
Última Modificación:06 Feb 2014 10:26

Sólo personal del repositorio: página de control del artículo