Complutense University Library

Global bifurcation and continua of nonnegative solutions for a quasilinear elliptic problem


Díaz Díaz, Jesús Ildefonso and Hernández, Jesús (1999) Global bifurcation and continua of nonnegative solutions for a quasilinear elliptic problem. Comptes Rendus de l'Académie des Sciences. Série I. Mathématique , 329 (7). pp. 587-592. ISSN 0764-4442

[img] PDF
Restringido a Repository staff only hasta 31 December 2020.


Official URL:


In this Note, we study the existence and multiplicity of solutions, strictly positive or nonnegative having a dead core (where the solution vanishes) of a one-dimensional equation of eigenvalue type associated to a quasilinear operator with strong absorption with respect to the diffusion.

Item Type:Article
Uncontrolled Keywords:existence; multiplicity; quasilinear
Subjects:Sciences > Mathematics > Differential equations
ID Code:15627

Aronson, D.G., Crandall, M.G., Peletier L.A., Stabilization of solutions of a degenerate non linear diffusion problem, Nonlin. Anal. 6 (1982) 1001-1022.

Bidaut-Yéron M.-E, Galaktionov Y., Grillot P., Yéron L., Singularities for a 2-dimensional semilinear elliptic equation with a non-Lipschitz nonlinearity.Publication nº141/97, Laboratoire de mathématiques et physique théorique, Université de Tours, 1997.

Cortazar, C., Elgueta, M., Felmer, P., On a semilinear elliptic problem in R with a non-Lipschitz nonlinearity, Adv. Differ. Eq. 1 (1996) 199-218.

Díaz J.L., Nonlinear Partial Differential Equations and Free Boundaries, Pitman, London, 1985.

Díaz J.L., Hernández J., (in preparation).

Díaz J.L., Kichenassamy S., (1990) (unpublished manuscript).

Guedda M., Véron L., Bífurcation phenomena associated to p-Laplace operator, Trans. Amer. Math. Soc. 310 (1988)419-431.

Smoller J., Wasserman, J. Global bifurcation of steady-state solutions, J. Differ. Eq. 39 (1981) 269-290.

Deposited On:14 Jun 2012 09:29
Last Modified:06 Feb 2014 10:28

Repository Staff Only: item control page