Biblioteca de la Universidad Complutense de Madrid

R X S Tables From A Bayesian Viewpoint


Gómez Villegas, Miguel A. y González Pérez, Beatriz (2010) R X S Tables From A Bayesian Viewpoint. Revista matemática complutense, 23 (1). pp. 19-35. ISSN 1988-2807

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.


URL Oficial:


The display of the data by means of contingency tables is used for discussing different approaches to statistical inference.
We develop a Bayesian procedure for the homogeneity testing problem of r populations using r × s contingency tables. The posterior probability of the homogeneity null hypothesis is calculated using a mixed prior distribution. The methodology consists of assigning an appropriate prior mass, π0, to the null and spreading the remainder, 1 − π0, over the alternative according to a density function.
With this method, it is possible to prove a theorem which shows when the p-value and the posterior probability can give rise to the same conclusion.

Tipo de documento:Artículo
Palabras clave:Contingency tables · p-values · Posterior probabilities · Reconciliation
Materias:Ciencias > Matemáticas > Estadística matemática
Código ID:15667

Berger, J.O., Bernardo, J.M., Sun, D.: The formal definition of reference priors. Ann. Stat. 37, 905–938 (2009)

Berger, J.O., Boukai, B., Wang, Y.: Unified Frequentist and Bayesian testing of a precise hypothesis. Stat. Sci. 12(3), 133–160 (1997)

Berger, J.O., Boukai, B., Wang, Y.: Simultaneous Bayesian-Frequentist sequential testing of nested hypothesis. Biometrika 86, 79–92 (1999)

Berger, J.O., Delampady, M.: Testing precise hypotheses (with discussion). Stat. Sci. 2(3), 317–352(1987)

Berger, J.O., Sellke, T.: Testing a point null hypothesis: the irreconcilability of p-values and evidence (with discussion). J. Am. Stat. Assoc. 82, 112–139 (1987)

Bernardo, J.M.: Reference posterior distributions for Bayesian inference (with discussion). J. R. Stat.Soc. B 41, 113–147 (1979)

Bernardo, J.M.: A Bayesian analysis of classical hypothesis testing (with discussion). In: Bernardo, J.M., DeGroot,M.H., Lindley, D.V., Smith, A.F.M. (Eds.) Bayesian Statistics, pp. 605–647. University Press, Valencia (1980)

Casella, G., Berger, R.L.: Reconciling Bayesian and Frequentist evidence in the one-sided testing problem (with discussion). J. Am. Stat. Assoc. 82, 1062–135 (1987)

Cox, D.R., Hinkcley, D.V.: Theoretical Statistics. Chapman & Hall, London (1974)

Delampady, M., Berger, J.O.: Lower bounds on Bayes factors for multinomial distributions, with applications to chi-squared tests of fit. Ann. Stat. 18, 1195–1316 (1990)

Dickey, J.M., Lienz, B.P.: The weighted likelihood ratio, sharp hypothesis about chances, the order of a Markov chain. Ann. Stat. 41, 214–226 (1970)

Edwards, W.L., Lindman, H., Savage, L.J.: Bayesian statistical inference for psychological research. Psychol. Rev. 70, 193–248 (1963)

Ghosh, J.K., Mukerjee, R.: Non-informative priors (with discussion). In: Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M. (Eds.) Bayesian Statistics, vol. 4, pp. 195–210. University Press, Oxford (1992)

Ghosh, J.K., Ramamoorthi, R.V.: Bayesian Nonparametrics, pp. 193–248. Springer, Berlin (2003),

Gómez-Villegas, M.A., Gómez, E.: Bayes factor in testing precise hyphotheses. Commun. Stat., Theory Methods 21, 1707–1715 (1992)

Gómez-Villegas, M.A., González-Pérez, B.: Bayesian analysis of contingency tables. Commun. Stat., Theory Methods 34(8), 1743–1754 (2005)

Gómez-Villegas, M.A., González-Pérez, B.: A condition to obtain the same decision in the homogeneity testing problem from the Frequentist and Bayesian point of view. Commun. Stat., Theory Methods 35, 2211–2222 (2006)

Gómez-Villegas, M.A., González-Pérez, B.: ε-contaminated priors in contingency tables. Test 17,163–178 (2008)

Gómez-Villegas, M.A., González-Pérez, B.: The multivariate point null testing problem: a Bayesian discussion. Stat. Probab. Lett. 78, 3070–3074 (2008)

Gómez-Villegas, M.A., Maín, P., Sanz, L.: A suitable Bayesian approach in testing point null hypothesis: some examples revisited. Commun. Stat., Theory Methods 31(2), 201–217 (2002)

Gómez-Villegas, M.A., Maín, P., Sanz, L.: A Bayesian analysis for the multivariate point null testing problem. Technical Report Dpto. EIO-I, Universidad Complutense de Madrid 04-01

Gómez-Villegas, M.A., Maín, P., Sanz, L.: Contraste de hipótesis nula puntual multivariante para variables normales correladas. Actas del XXX Congreso Nacional de Estadística e Investigación Operativa y IV Jornadas de Estadística Pública (2007)

Gómez-Villegas, M.A., Maín, P., Sanz, L., Navarro, H.: Asymptotic relationships between posterior probabilities and p-values using the hazard rate. Stat. Probab. Lett. 66, 59–66 (2004)

Gómez-Villegas, M.A., Sanz, L.: Reconciling Bayesian and Frequentist evidence in the point null testing problem. Test 7(1), 207–216 (1998)

Gómez-Villegas, M.A., Sanz, L.: ε-contaminated priors in testing point null hypothesis: a procedure to determine the prior probability. Stat. Probab. Lett. 47, 53–60 (2000)

Good, I.J.: A Bayesian significance test for multinomial distributions. J. R. Stat. Soc. A 30, 399–431(1967)

Gunel, E., Dickey, J.: Bayes factors for independence in contingency tables. Biometrika 61(3), 545–557 (1974)

Haldane, J.B.S.: A note on inverse probability. Proc. Camb. Philos. Soc. 28, 55–61 (1931)

Howard, J.V.: The 2×2 table: a discussion from a Bayesian viewpoint. Stat. Sci. 13(4), 351–367(1998)

Hwang, J.T., Casella, G., Robert, C., Wells, M., Farrel, R.: Estimation of accuracy in testing (with discussion). Ann. Stat. 20, 490–509 (1992)

Lindley, D.V.: A statistical paradox. Biometrika 44, 187–192 (1957)

McCulloch, R.E., Rossi, P.E.: Bayes factors for non-linear hypothesis and likelihood distributions.Biometrika 79, 663–676 (1992)

Micheas, A.C., Dey, D.K.: Prior and posterior predictive p-values in the one-sided location parameter testing problem. Sankhya, Ser. A 65, 158–178 (2003)

Mukhopadhyay, S., DasgGupta, A.: A uniform approximation of Bayes solutions and posteriors: Frequentistly valid Bayes inference. Stat. Decis. 15, 51–73 (1997)

Oh, H.S., DasGupta, A.: Comparison of the p-value and posterior probability. J. Stat. Plan. Inference 76, 93–107 (1999)

Pearson, E.S.: The choice of statistical tests illustrated on the interpretation of data classed in a 2×2 table. Biometrika 34, 139–167 (1947)

Rubin, D.B.: Bayesianly justifiable and relevant frequency calculations for the applied statistician. Ann. Stat. 12, 1151–1172 (1984)

Sellke, T., Bayarri, M.J., Berger, O.: Calibration of p values for testing precise null hypotheses. Ann. Stat. 55(1), 62–71 (2001)

Spiegelhalter, D.J., Smith, A.F.M.: Bayes factors for linear and log-linear models with vague prior information. J. R. Stat. Soc., Ser. B 44, 377–387 (1982)

Depositado:19 Jun 2012 09:52
Última Modificación:26 Jul 2016 08:26

Sólo personal del repositorio: página de control del artículo