Complutense University Library

N-compactness and shape

Morón, Manuel A. (1991) N-compactness and shape. Proceedings of the American Mathematical Society, 113 (2). pp. 545-550. ISSN 0002-9939

[img] PDF
Restricted to Repository staff only until 31 December 2020.

157kB

Official URL: http://www.jstor.org/stable/2048541

View download statistics for this eprint

==>>> Export to other formats

Abstract

In this paper we prove that two N-compact spaces are homeomorphic if and only if they have the same shape. We also obtain a result concerning shape domination, and finally we give an answer to the problem of components in shape theory.

Item Type:Article
Uncontrolled Keywords:N-compactness; shape
Subjects:Sciences > Mathematics > Topology
ID Code:15677
References:

K. Borsuk, Theory of shape, Polish Scientific, Warsaw, 1975.

J. Dydak and M. A. Morón, Quasicomponents and shape theory, Topology Proc. 13 (1988), 73-82.

J. Dydak and J. Segal, Shape theory: An introduction, Lecture Notes in Math., vol. 688, Springer-Verlag, 1978, pp. 1-150.

R. Engelking, General topology, Polish Scientific, Warszawa, 1977.

Dimension theory, Polish Scientific, Warszawa, 1978; North-Holland, Amsterdam, Oxford, and New York.

H. Herrlich, E-Kompakte Räume, Math. Z. 96 (1967), 228-255.

G. Kozlowski and J. Segal, On the shape of 0-dimensional paracompacta, Fund. Math. 86 (1974), 151-154.

S. Mardešić, Shapes for topological spaces, Gen. Topology Appl. 3 (1973), 265-282.

S. Mardešić and J. Segal, Shape theory, North-Holland, Amsterdam, 1982.

M. A. Morón, On the Wallman-Frink compactification of 0-dimensional spaces and shape, preprint.

S. Mröwka, On universal spaces, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys. 4 (1956), 479-481.

Recent results of E-compact spaces (Proc. of the Second Pittsburg Internat. Conf. on General Topology and Applications, 1972), Lecture Notes in Math., vol. 378, Springer, 1974, pp. 298-301.

N-compactness, metrizability and covering dimension, Rings of Continuous Functions, Lecture Notes in Pure and Appl. Math., vol. 95 (Charles E. Aull, ed.), pp. 247-275.

R. Engelking and S. Mröwka, On E-compact spaces, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys. 6 (1958), 429-436.

P. Nyikos, Prabir Roy's space Δ is not N-compact, Gen. Topology Appl. 3 (1973), 197-210.

P. Roy, Nonequality of dimensions for metric spaces, Trans. Amer. Math. Soc. 134 (1968), 117-132.

R. Walker, The Stone-Čech compactifications, Springer-Verlag, 1974.

Deposited On:19 Jun 2012 09:13
Last Modified:04 Nov 2013 18:56

Repository Staff Only: item control page