Morón, Manuel A.
(1991)
*N-compactness and shape.*
Proceedings of the American Mathematical Society, 113
(2).
pp. 545-550.
ISSN 0002-9939

PDF
Restricted to Repository staff only until 31 December 2020. 157kB |

Official URL: http://www.jstor.org/stable/2048541

## Abstract

In this paper we prove that two N-compact spaces are homeomorphic if and only if they have the same shape. We also obtain a result concerning shape domination, and finally we give an answer to the problem of components in shape theory.

Item Type: | Article |
---|---|

Uncontrolled Keywords: | N-compactness; shape |

Subjects: | Sciences > Mathematics > Topology |

ID Code: | 15677 |

References: | K. Borsuk, Theory of shape, Polish Scientific, Warsaw, 1975. J. Dydak and M. A. Morón, Quasicomponents and shape theory, Topology Proc. 13 (1988), 73-82. J. Dydak and J. Segal, Shape theory: An introduction, Lecture Notes in Math., vol. 688, Springer-Verlag, 1978, pp. 1-150. R. Engelking, General topology, Polish Scientific, Warszawa, 1977. Dimension theory, Polish Scientific, Warszawa, 1978; North-Holland, Amsterdam, Oxford, and New York. H. Herrlich, E-Kompakte Räume, Math. Z. 96 (1967), 228-255. G. Kozlowski and J. Segal, On the shape of 0-dimensional paracompacta, Fund. Math. 86 (1974), 151-154. S. Mardešić, Shapes for topological spaces, Gen. Topology Appl. 3 (1973), 265-282. S. Mardešić and J. Segal, Shape theory, North-Holland, Amsterdam, 1982. M. A. Morón, On the Wallman-Frink compactification of 0-dimensional spaces and shape, preprint. S. Mröwka, On universal spaces, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys. 4 (1956), 479-481. Recent results of E-compact spaces (Proc. of the Second Pittsburg Internat. Conf. on General Topology and Applications, 1972), Lecture Notes in Math., vol. 378, Springer, 1974, pp. 298-301. N-compactness, metrizability and covering dimension, Rings of Continuous Functions, Lecture Notes in Pure and Appl. Math., vol. 95 (Charles E. Aull, ed.), pp. 247-275. R. Engelking and S. Mröwka, On E-compact spaces, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys. 6 (1958), 429-436. P. Nyikos, Prabir Roy's space Δ is not N-compact, Gen. Topology Appl. 3 (1973), 197-210. P. Roy, Nonequality of dimensions for metric spaces, Trans. Amer. Math. Soc. 134 (1968), 117-132. R. Walker, The Stone-Čech compactifications, Springer-Verlag, 1974. |

Deposited On: | 19 Jun 2012 09:13 |

Last Modified: | 04 Nov 2013 18:56 |

Repository Staff Only: item control page