Complutense University Library

Mathematical treatment of the magnetic confinement in a current carrying stellarator


Díaz Díaz, Jesús Ildefonso and Padial Molina, Juan Francisco and Rakotoson, Jean Michel Theresien (1998) Mathematical treatment of the magnetic confinement in a current carrying stellarator. Nonlinear analysis : theory, methods and applications, 34 (6). pp. 857-887. ISSN 0362-546X

[img] PDF
Restringido a Repository staff only hasta 31 December 2020.


Official URL:


The model studied concerns the case of a stellarator machine and the magnetic confinement is modeled by using averaging methods and suitable vacuum coordinates. This is shown to lead to a two-dimensional Grad-Shafranov type problem for the averaged poloidal flux function. Various problems are considered and it is pointed out that corresponding problems for models based on tokamak machines are essentially similar.

Item Type:Article
Uncontrolled Keywords:free-boundary problem; relative rearrangement; plasma physics; equilibrium; inverse nonlinear elliptic problem; relative rearrangement; Galerkin methods; free boundary problem
Subjects:Sciences > Mathematics > Numerical analysis
ID Code:15678

T.C. Hender, B.A. Carreras. Equilibrium calculations for helical axis Stellarators Phys. Fluids, 27 (1984), pp. 2101–2116

A.H. Boozer, Establishment of magnetic coordinates for a given magnetic field, Phys. Fluids, March 25(3) 1982.

J.I.Díaz, J.M.Rakotoson On a nonlocal stationary free boundary problem arising in the confinement of a plasma in a Stellarator geometry. Archive for Rational Mechanics and Analysis,, 134 (1996), pp. 53–95

J.I. Díaz, Modelos bidimensionales de equilibrio magnetohidrodinámico para Stellarators, Informe #1 and #2, Association EURATOM/CIEMAT, 1992.

W.A. Cooper, Global external ideal magnetohydrodynamic instabilities in three-dimensional plasmas, Theory of Fusion Plasmas, Proc. of the Joint Varenna–Laussane Workshop, 1990, Compositori, Bologna.

R. Temam. A nonlinear eigenvalue problem: equilibrium shape of a confined plasma. Arch. Rational Mec. Anal., 60 (1975), pp. 51–73

R. Temam. Remarks on a free boundary problem arising in plasma physics. Comm. Partial Diff. Equations, 2 (1977), pp. 563–585

H. Berstycki, H. Brezis. On a free boundary problem arising in plasma physics. Nonlinear Analysis, 4 (1980), pp. 415–436

J. Blum. Numerical Simulation and Optimal Control in Plasma PhysicsWiley Gauthier-Villars, Paris (1989)

A. Friedman. Variational Principles and Free-boundary ProblemsWiley, New York (1982)

J. Mossino, R. Temam. Directional derivative of the increasing rearrangement mapping and application to a queer differential equation in plasma physics. Duke Math. J., 48 (1981), pp. 475–495

J.I. Díaz J.M. Rakotoson, On a two-dimensional stationary free boundary problem arising in the confinement of a plasma in a Stellarator, C.R. Acad. Sciences Paris, 1993, 317 Série I, 353–358.

J. Mossino. A priori estimates for a model of grad mercier type in plasma confinement. Applicable Analysis, 13 (1982), pp. 185–207

G. Talenti. Elliptic equations and rearrangements. Annali della Scuola Norm. Sup. di Pisa, Série IV,, 4 (1967), pp. 697–718

J.F. Padial, J.M. Rakotoson, L. Tello, Introduction to monotone and relative rearrangements and applications, Département de Mathématiques. Univ. de Poitiers, Report No. 81, 1993, 36pp.

J.M. Rakotoson. Differentiability of the relative rearrangement. Diff. and Int. Equation, 2 (1989), pp. 363–377

J.M. Rakotoson, R. Temam. A co-area formula with applications to monotone rearrangement and to regularity. Arch. Rational Mech. Anal., 109 (3) (1990), pp. 231–238

F.J. Almagren, E. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Am. Math. Soc. 2 (4) (1989).

J.M. Rakotoson. Relative rearrangement for highly nonlinear equations. Nonlinear Analysis, 24 (4) (1995), pp. 493–507

J. Mossino, J.M. Rakotoson, Isoperimetric inequalities in parabolic equations, Annali della Scuola Normale Superiore di Pisa, Série IV, XIII (1) (1986) 51–73.

B. Simon, Réarrangement relatif sur un espace mesuré et applications, Thèse, Univ. de Poitiers, April 1994.

J.M. Rakotoson. Some properties of the relative rearrangement. J. Math. Anal. Appl., 135 (1988), pp. 475–495

J.M. Rakotoson. Strong continuity of the relative rearrangement maps and application to a Galerkin approach for nonlocal problems. Applied Math. Letters, 8 (6) (1995), pp. 61–63

J.M. Rakotoson, Galerkin approximation, strong continuity of the relative rearrangement maps and application to plasma physics equations, to appear.

J.L. Lions. Quelques méthodes de résolution des problèmes aux limites non linéairesDunod Gauthier-Villars, Paris (1969)

C. Mercier, The M.H.D. approach to the problem of plasma confinement in closed magnetic configurations, Lecture in Plasma Physics. Commision of the European Community Publishers, Luxembourg, 1974.

J.P. Boujot, J.P. Morera, R. Temam, An optimal control problem related to the equilibrium of a plasma in a cavity, Applied Mathematics and Optimization 2 (2) (1975).

H. Grad. Mathematical problems arising in plasma physics. Proc. Intern. Congr. Math. Nice, 3 (1970), pp. 105–113

H. Grad, P. Hu, D.C. Stevens. Adiabatic evolution of plasma equilibrium. Proc. Nat. Acad. Sci., 72 (1975), pp. 3789–3793

J. Blum, T. Gallouet, J. Simon, Existence and control of plasma equilibrium in a Tokamak, SIAM. J. Math. Anal. 17 (1986).

A. Damlamian, Application de la dualité non convexe d’un probléme non linéaire a frontière libre (équilibre d’un plasma confiné), C.R. Acad. Sciences Paris, 286 Serie I (1978) 153–155.

J. Puel. Sur un problème de valeur prope non lineaire et de frontière libre. C.R. Acad. Sciences Paris,, 284 (1977), pp. 861–863

D. Schaeffer. Nonuniqueness in the equilibrium shape of a confined plasma, Qualitative properties of the plasma. Com. Part. Diff. Eq., 2 (1977), pp. 587–600

C. Bandle, M. Marcus. A priori estimates and the boundary values of pollutions for a problem arising in plasmas physics. Nonlinear Analysis, 7 (1983), pp. 439–451

L. Cafarelli, A. Friedman. Asymptotic estimates for the plasma problem. Duke Math. J., 47 (3) (1980), pp. 705–742

D. Kinderlehrer, J. Spruck. The shape and smoothness of stable plasma configurations. Ann. Scu. Norm. Sup. Pisa, 1 (1978), pp. 131–148

Deposited On:19 Jun 2012 09:11
Last Modified:02 Jun 2014 08:22

Repository Staff Only: item control page