Universidad Complutense de Madrid
E-Prints Complutense

Limit points of lines of minima in Thurston's boundary of Teichmüller space

Impacto

Descargas

Último año



Díaz Sánchez, Raquel y Series, Caroline (2003) Limit points of lines of minima in Thurston's boundary of Teichmüller space. Algebraic and Geometric Topology, 3 . pp. 207-234. ISSN 1472-2747

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.

278kB

URL Oficial: http://emis.math.ca/journals/UW/agt/ftp/main/2003/agt-3-9.pdf


URLTipo de URL
http://emis.org/Institución


Resumen

Given two measured laminations µ and ν in a hyperbolic sur-face which fill up the surface, Kerckhoff defines an associated line of minima along which convex combinations of the length functions of µ andν are minimised. This is a line in Teichmüller space which can be thought as analogous to the geodesic in hyperbolic space determined by two points at infinity. We show that when µ is uniquely ergodic, this line converges to the projective lamination [µ], but that when µ is rational, the line converges not to [µ], but rather to the barycentre of the support of µ. Similar results on the behaviour of Teichmüller geodesics have been proved by Masur


Tipo de documento:Artículo
Palabras clave:Moduli of Riemann surfaces, Teichmüller theory; Fuchsian groups and their generalizations; Teichmüller theory; Quasiconformal methods and Teichmüller theory; Fuchsian and Kleinian groups as dynamical systems; Geometric structures on low-dimensional manifolds
Materias:Ciencias > Matemáticas > Geometría
Código ID:15710
Depositado:21 Jun 2012 08:59
Última Modificación:06 Feb 2014 10:30

Descargas en el último año

Sólo personal del repositorio: página de control del artículo