Complutense University Library

A generalization of Andreev theorem

Díaz Sánchez, Raquel (2006) A generalization of Andreev theorem. Journal of the mathematical society of japan, 58 (2). pp. 333-349. ISSN 0025-5645

[img] PDF
Restricted to Repository staff only until 31 December 2020.

236kB

Official URL: http://projecteuclid.org/euclid.jmsj/1149166778

View download statistics for this eprint

==>>> Export to other formats

Abstract

Andreev's Theorem studies the existence of compact hyperbolic polyhedra of a given combinatorial type and given dihedral angles, all of them acute. In this paper we consider the same problem but without any restriction on the dihedral angles. We solve it for the descendants of the tetrahedron, i.e. those polyhedra that can be obtained from the tetrahedron by successively truncating vertices; for instance, the first of them is the triangular prism.

Item Type:Article
Uncontrolled Keywords:hyperbolic polyhedra; dihedral angles; Andreev's Theorem
Subjects:Sciences > Mathematics > Geometry
ID Code:15714
References:

E. M. Andreev, On convex polyhedra in Lobachevskii spaces, Math. USSR Sb., 10 (1970), 413–440.

E. M. Andreev, Convex polyhedra of finite volume in Lobachevskii space, Math. USSR Sb., 12 (1970), 255–259.

R. Benedetti and J. J. Risler, Real Algebraic and Semialgebraic Geometry, Actualités Math., Hermann, 1990.

A. L. Cauchy, Sur les polygones et polyèdres, J. Ec. Polytechnique, 16 (1813), 87–99.

R. Díaz, Non-convexity of the space of dihedral angles of hyperbolic polyhedra, C. R. Acad. Sci. Paris Série I, 325 (1997), 993–998.

R. Díaz, A Characterization of Gram Matrices of Polytopes, Discrete Comput. Geom., 21 (1999), 581–601.

F. R. Gantmacher, The theory of matrices, Vol.,I, Chelsea Publishing Company, New York, 1959.

B. Iversen, Hyperbolic Geometry, Cambridge Univ. Press, 1992.

J. Milnor, The Schläfli differential equality, In: Collected papers Vol.,1: Geometry, Houston, Publish or Perish Inc., 1994.

I. Rivin and C. D. Hodgson, A characterization of compact convex polyhedra in hyperbolic 3-space, Invent. Math., 111 (1993), 77–111.

E. B. Vinberg, Hyperbolic reflection groups, Russian Math. Surveys, 40 (1985), no.,1, p.,31–75.

Deposited On:21 Jun 2012 10:19
Last Modified:06 Feb 2014 10:30

Repository Staff Only: item control page