E-Prints Complutense

Uniformization of conformal involutions on stable Riemann surfaces



Último año

Díaz Sánchez, Raquel y Garijo, Ignacio y Hidalgo, Rubén A. (2011) Uniformization of conformal involutions on stable Riemann surfaces. Israel Journal of Mathematics , 186 (1). pp. 297-331. ISSN 0021-2172

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.


URL Oficial: http://www.springerlink.com/content/e703638w47h57538/fulltext.pdf

URLTipo de URL


Let S be a closed Riemann surface of genus g. It is well known that there are Schottky groups producing uniformizations of S (Retrosection Theorem). Moreover, if τ: S → S is a conformal involution, it is also known that there is a Kleinian group K containing, as an index two subgroup, a Schottky group G that uniformizes S and so that K/G induces the cyclic group 〈τ〉. Let us now assume S is a stable Riemann surface and τ: S → S is a conformal involution. Again, it is known that S can be uniformized by a suitable noded Schottky group, but it is not known whether or not there is a Kleinian group K, containing a noded Schottky group G of index two, so that G uniformizes S and K/G induces 〈τ〉. In this paper we discuss this existence problem and provide some partial answers: (1) a complete positive answer for genus g ≤ 2 and for the case that S/〈τ〉 is of genus zero; (2) the existence of a Kleinian group K uniformizing the quotient stable Riemann orbifold S/〈τ〉. Applications to handlebodies with orientation-preserving involutions are also provided.

Tipo de documento:Artículo
Palabras clave:Riemann surfaces; conformal involutions
Materias:Ciencias > Matemáticas > Geometría
Código ID:15719
Depositado:21 Jun 2012 11:23
Última Modificación:06 Feb 2014 10:30

Descargas en el último año

Sólo personal del repositorio: página de control del artículo