Morón, Manuel A.
(1986)
*Prabir Roy's space Δ as a counterexample in shape theory.*
Proceedings of the American Mathematical Society, 98
(1).
pp. 187-188.
ISSN 0002-9939

PDF
Restricted to Repository staff only until 31 December 2020. 112kB |

Official URL: http://www.jstor.org/stable/2045794

## Abstract

In this note we use the space Δ in order to prove that a result concerning movability and mutational retractions cannot be transferred from the compact to the arbitrary metrizable case

Item Type: | Article |
---|---|

Uncontrolled Keywords: | Movable; mutational retract; Prabir Roy's space Δ. |

Subjects: | Sciences > Mathematics > Topology |

ID Code: | 15722 |

References: | K. Borsuk, Theory of shape, Monogr. Mat. 59, PWN, Warsaw, 1975. R. Engelking, General topology, Monogr. Mat. 60, PWN, Warsaw, 1977. R. H. Fox, On shape, Fund. Math. 74 (1972), 47-71. S. Godlewski, Mutational retracts and extensions of mutations, Fund. Math. 84 (1974), 47-65. P. Nyikos, Prabir Roy's space Δ is not N-compact, General Toplogy Appl. 3 (1973), 197-210. P. Roy, Nonequality of dimensions for metric spaces, Trans. Amer. Math. Soc. 134 (1968), 117-132. K. Sakai, Some properties of MAR and MANR, Tôhoku Math. J. 30 (1978), 351-366. S. Spiez, A majorant for the family of all movable shapes, Bull. Acad. Polon. Sci. 21 (1973), 615-620. |

Deposited On: | 22 Jun 2012 08:31 |

Last Modified: | 05 Nov 2013 15:32 |

Repository Staff Only: item control page