Biblioteca de la Universidad Complutense de Madrid

Klein surfaces with maximal symmetry and their groups of automorphisms

Impacto

Etayo Gordejuela, J. Javier (1984) Klein surfaces with maximal symmetry and their groups of automorphisms. Mathematische Annalen, 268 (4). pp. 533-538. ISSN 0025-5831

URL Oficial: http://www.springerlink.com/content/k332112h2292272q/




Resumen

A Klein surface X is a surface with a dianalytic structure. If its topological genus is g and it has k boundary components then its algebraic genus is p=2g+k−1 (X orientable) and p=g+k−1 (X nonorientable). A Klein surface of algebraic genus p has at most 12(p−1) automorphisms and if this bound is attained then AutX is called an M ∗ -group. In this paper the author finds families of M ∗ -groups and determines the topological type of the surface on which they act. The groups he deals with are those of the form G m,n,q considered by H. M. S. Coxeter [Trans. Amer. Math. Soc. 45 (1939), 73--150; Zbl 20, 207]: PSL(2,q), q≡1mod4, PGL(2,q), q≡3mod4 and PSL(2,2 m ) . For related work see a paper by N. Greenleaf and C. L. May [ibid. 274 (1982), no. 1, 265--283]


Tipo de documento:Artículo
Palabras clave:Classification theory of Riemann surfaces; Coverings, fundamental group; Other matrix groups over fields
Materias:Ciencias > Matemáticas > Funciones (Matemáticas)
Código ID:15738
Depositado:22 Jun 2012 11:09
Última Modificación:22 Jun 2012 11:09

Sólo personal del repositorio: página de control del artículo