Universidad Complutense de Madrid
E-Prints Complutense

On the order of automorphism groups of Klein surfaces



Último año

Etayo Gordejuela, J. Javier (1985) On the order of automorphism groups of Klein surfaces. Glasgow Mathematical Journal, 26 . pp. 75-81. ISSN 0017-0895

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.


URL Oficial: http://journals.cambridge.org/abstract_S0017089500005796

URLTipo de URL


A problem of special interest in the study of automorphism groups of surfaces are the bounds of the orders of the groups as a function of the genus of the surface. May has proved that a Klein surface with boundary of algebraic genus p has at most 12(p–1) automorphisms. In this paper we study the highest possible prime order for a group of automorphisms of a Klein surface. This problem was solved for Riemann surfaces by Moore in. We shall use his results for studying the Klein surfaces that are not Riemann surfaces. The more general result that we obtain is the following: if X is a Klein surface of algebraic genus p, and G is a group of automorphisms of X, of prime order n, then n ≤ p + 1.

Tipo de documento:Artículo
Palabras clave:non-Euclidean crystallographic group; Klein surface; group of automorphisms
Materias:Ciencias > Matemáticas > Grupos (Matemáticas)
Código ID:15746
Depositado:25 Jun 2012 08:34
Última Modificación:06 Feb 2014 10:30

Descargas en el último año

Sólo personal del repositorio: página de control del artículo