Biblioteca de la Universidad Complutense de Madrid

Bordered and unbordered Klein surfaces with maximal symmetry

Impacto

Etayo Gordejuela, J. Javier y Pérez-Chirinos, C. (1986) Bordered and unbordered Klein surfaces with maximal symmetry. Journal of Pure and Applied Algebra , 42 (1). pp. 29-35. ISSN 0022-4049

URL Oficial: http://www.sciencedirect.com/science/article/pii/0022404986900575




Resumen

A compact Klein surface with boundary of algebraic genus g≥2 has at most 12(g−1) automorphisms. When a surface attains this bound we say that it has maximal symmetry, and the group of automorphisms is then an M group. In this paper we exhibit four new infinite families of M simple groups, and determine with the aid of a computer the groups PSL(n, q) of order less than 50,000 that are M groups. Using these results, we prove the existence of seven topologically different surfaces of algebraic genus 1013, all of them having maximal symmetry.


Tipo de documento:Artículo
Palabras clave:Klein surface; automorphism; maximal symmetry; ; simple group; computer-aided proof
Materias:Ciencias > Matemáticas > Grupos (Matemáticas)
Código ID:15753
Depositado:25 Jun 2012 10:43
Última Modificación:25 Jun 2012 10:43

Sólo personal del repositorio: página de control del artículo