Universidad Complutense de Madrid
E-Prints Complutense

Large automorphism groups of hyperelliptic Klein surfaces



Último año

Bujalance, E. y Etayo Gordejuela, J. Javier (1988) Large automorphism groups of hyperelliptic Klein surfaces. Proceedings of the American Mathematical Society, 103 (3). pp. 679-686. ISSN 0002-9939

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.


URL Oficial: http://www.jstor.org/stable/2046834

URLTipo de URL


A bordered Klein surface of algebraic genus p has at most 12(p-1) automorphisms and this is attained for infinitely many values of p. Furthermore, for an infinity of values of p, the largest group of automorphisms of such a surface is $4(p+1)$ or 4p depending on whether the surface is orientable or not [{\it C. L. May}, Pac. J. Math. 59, 199- 210 (1975) and Proc. Am. Math. Soc. 63, 273-280 (1977]. \par Here the authors examine such surfaces which are additionally hyperelliptic and have automorphism groups of order exceeding 4(p-1). Using their characterization of hyperelliptic Klein surface via non- Euclidean crystallographic groups [Q. J. Math., Oxf. II. Ser. 36, 141-157 (1985)] the authors determine these automorphism groups, which are all dihedral or direct sums of a dihedral group and a cyclic group of order 2, and the corresponding topological type of the surface.

Tipo de documento:Artículo
Palabras clave:Fuchsian groups and their generalizations; Curves; Compact Riemann surfaces and uniformization
Materias:Ciencias > Matemáticas > Geometria algebraica
Código ID:15766
Depositado:26 Jun 2012 10:47
Última Modificación:26 Jun 2012 10:47

Descargas en el último año

Sólo personal del repositorio: página de control del artículo