Complutense University Library

El género real de los grupos C2m ×Dn

Etayo Gordejuela, J. Javier and Martínez García, Ernesto (2004) El género real de los grupos C2m ×Dn. In Contribuciones matemáticas : homenaje al profesor Enrique Outerelo Domínguez. Editorial Complutense, Madrid, pp. 171-182. ISBN 84-7491-767-0

[img] PDF
Restricted to Repository staff only until 31 December 2020.

View download statistics for this eprint

==>>> Export to other formats


Todo grupo finito G actúa como grupo de automorfismos de diversas superficies de Klein con borde. Al menor de los géneros algebraicos de estas superficies se le llama género real ρ(G) del grupo G. Se conocen todos los grupos con0 ≤ ρ(G) ≤ 8, ası como el género real para varias familias de grupos. En este trabajo calculamos el género real de los grupos 0 = C2m × Dn, en función delos números m y n.

Item Type:Book Section
Uncontrolled Keywords:Género real de un grupo, superficies de Klein con borde, grupos de automorfismos
Subjects:Sciences > Mathematics > Group Theory
ID Code:15786

N.L. Alling, N. Greenleaf: Foundations of the theory of Klein surfaces. Lect. Notes in Math. 219, Springer-Verlag, Berlin 1971.

E. Bujalance, J.J. Etayo, J.M. Gamboa, G. Gromadzki: A combinatorial approach to automorphism groups of compact bordered Klein surfaces. Lecture Notes in Math. 1439, Springer-Verlag, Berlin 1990.

E. Bujalance, E. Mart´ınez: A remark on NEC groups representing surfaces with boundary. Bull. London Math. Soc. 21 (1989), 263–266.

G. Gromadzki, B. Mockiewicz: The groups of real genus 6, 7 and 8. Houston J. Math. 28 (2002), 691–699.

A.M. Macbeath: The classification of non-Euclidean crystallographic groups. Canad. J. Math. 19 (1967), 1192–1205.

C.L. May: Large automorphism groups of compact Klein surfaces with boundary. Glasgow Math. J. 18 (1977), 1–10.

The groups of real genus 4. Michigan Math. J. 39 (1992), 219–228.

Finite groups acting on bordered surfaces and the real genus of a group. Rocky Mountain J. Math. 23 (1993), 707–724.

Groups of small real genus. Houston J. Math. 20 (1994), 393–408.

Finite metacyclics groups acting on bordered surfaces. Glasgow Math. J. 36 (1994), 23–240.

D. McCullough: Minimal genus of abelian actions on Klein surfaces with boundary. Math. Z. 205 (1990), 421–436.

R. Preston: Projective structures and fundamental domains on compact Klein surfaces. Ph.D. Thesis, Univ. of Texas, 1975.

H.C. Wilkie: On non-Euclidean crystallographic groups. Math. Z. 91 (1966), 87–102.

Deposited On:27 Jun 2012 11:09
Last Modified:06 Feb 2014 10:31

Repository Staff Only: item control page