E-Prints Complutense

The real genus of cyclic by dihedral and dihedral by dihedral groups



Último año

Etayo Gordejuela, J. Javier y Martínez García, Ernesto (2006) The real genus of cyclic by dihedral and dihedral by dihedral groups. Journal of Algebra, 296 (1). pp. 145-156. ISSN 0021-8693

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.


URL Oficial: http://www.sciencedirect.com/science/article/pii/S0021869305002097

URLTipo de URL


Every finite group G acts as an automorphism group of several bordered compact Klein surfaces. The minimal genus of these surfaces is called the real genus and denoted by ρ(G).
The systematical study was begun by C.L. May and continued by him in several other papers about the topic. As a consequence of these works, he and other authors obtained the groups such that 0⩽ρ(G)⩽8. The real genus of many families of groups has also been calculated. In this work we are interested in finding the real genus of each groupDr×Ds, where both factors are dihedral groups. Results depend on the real genus of groupsCm×Dn, where Cm is a cyclic group. The case m odd was studied by May and the authors have studied the case m even. The result of May needs to be slightly corrected.
In this work we complete the proof of May for the case m odd and we calculate the real genus of the groupsDr×Ds.

Tipo de documento:Artículo
Palabras clave:Group actions in low dimensions; Fuchsian groups and their generalizations
Materias:Ciencias > Matemáticas > Geometria algebraica
Código ID:15791
Depositado:28 Jun 2012 08:54
Última Modificación:06 Feb 2014 10:31

Descargas en el último año

Sólo personal del repositorio: página de control del artículo