Universidad Complutense de Madrid
E-Prints Complutense

Alternating groups as automorphism groups of Riemann surfaces

Impacto

Descargas

Último año

Etayo Gordejuela, J. Javier y Martínez García, Ernesto (2006) Alternating groups as automorphism groups of Riemann surfaces. International Journal of Algebra and Computation, 16 (1). pp. 91-98. ISSN 0218-1967

URL Oficial: http://www.worldscinet.com/ijac/16/1601/S0218196706002937.html


URLTipo de URL
http://www.worldscinet.com/Editorial


Resumen

In this work we give pairs of generators (x, y) for the alternating groups An, 5 ≤ n ≤ 19, such that they determine the minimal genus of a Riemann surface on which An acts as the automorphism group. Using these results we prove that A15 is the unique of these groups that is an H*-group, i.e., the groups achieving the upper bound of the order of an automorphism group acting on non-orientable unbordered surfaces.


Tipo de documento:Artículo
Palabras clave:Automorphisms; Fuchsian groups and their generalizations; Compact Riemann surfaces and uniformization; Klein surfaces
Materias:Ciencias > Matemáticas > Geometria algebraica
Código ID:15792
Depositado:28 Jun 2012 09:30
Última Modificación:28 Jun 2012 09:30

Descargas en el último año

Sólo personal del repositorio: página de control del artículo