E-Prints Complutense

The real genus of the alternating groups



Último año

Etayo Gordejuela, J. Javier y Martínez García, Ernesto (2008) The real genus of the alternating groups. Revista Matemática Iberoamericana, 24 (3). pp. 865-894. ISSN 0213-2230

URL Oficial: http://projecteuclid.org/euclid.rmi/1228834296

URLTipo de URL


A Klein surface with boundary of algebraic genus $\mathfrak{p}\geq 2$, has at most $12(\mathfrak{p}-1)$ automorphisms. The groups attaining this upper bound are called $M^{\ast}$-groups, and the corresponding surfaces are said to have maximal symmetry. The $M^{\ast}$-groups are characterized by a partial presentation by generators and relators. The alternating groups $A_{n}$ were proved to be $M^{\ast}$-groups when $n\geq 168$ by M. Conder. In this work we prove that $A_{n}$ is an $M^{\ast }$-group if and only if $n\geq 13$ or $n=5,10$. In addition, we describe topologically the surfaces with maximal symmetry having $A_{n}$ as automorphism group, in terms of the partial presentation of the group. As an application we determine explicitly all such surfaces for $n\leq 14$. Each finite group $G$ acts as an automorphism group of several Klein surfaces. The minimal genus of these surfaces is called the real genus of the group, $\rho(G)$. If $G$ is an $M^{\ast}$-group then $\rho(G)=\frac{o(G)}{12}+1$. We end our work by calculating the real genus of the alternating groups which are not $M^{\ast}$-groups.

Tipo de documento:Artículo
Palabras clave:alternating groups; real genus; $M^{\ast}$-groups; bordered Klein surfaces
Materias:Ciencias > Matemáticas > Grupos (Matemáticas)
Código ID:15813
Depositado:03 Jul 2012 09:14
Última Modificación:24 Abr 2013 12:41

Descargas en el último año

Sólo personal del repositorio: página de control del artículo