E-Prints Complutense

The action of the groups Dm × Dn on unbordered Klein surfaces

Impacto

Descargas

Último año

Etayo Gordejuela, J. Javier y Martínez García, Ernesto (2011) The action of the groups Dm × Dn on unbordered Klein surfaces. Revista de la Real Academia de Ciencias Exactas Fisicas y Naturales Serie A: Matemáticas, 105 (1). pp. 95-106. ISSN 1578-7303

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.

171kB

URL Oficial: http://www.springerlink.com/content/u727551727283195/fulltext.pdf


URLTipo de URL
http://www.springerlink.com/Editorial


Resumen

Every finite group G may act as an automorphism group of Klein surfaces either bordered or unbordered either orientable or non-orientable. For each group the minimum genus receives different names according to the topological features of the surface X on which it acts. If X is a bordered surface the genus is called the real genus ρ(G). If X is a non-orientable unbordered surface the genus is called the symmetric crosscap number of G and it is denoted by [(s)\tilde](G)(G). Finally if X is a Riemann surface it has two related parameters. If G only contains orientation-preserving automorphisms we have the strong symmetric genus, σ 0(G). If we allow orientation-reversing automorphisms we have the symmetric genus σ(G). In this work we obtain the strong symmetric genus and the symmetric crosscap number of the groups D m × D n . The symmetric genus of these groups is 1. However we introduce and obtain a new parameter, denoted by τ as the least genus g ≥ 2 of Riemann surfaces on which these groups act disregarding orientation


Tipo de documento:Artículo
Palabras clave:Klein surfaces; Strong symmetric genus; Symmetric crosscap number
Materias:Ciencias > Matemáticas > Grupos (Matemáticas)
Código ID:15815
Depositado:03 Jul 2012 09:41
Última Modificación:06 Feb 2014 10:32

Descargas en el último año

Sólo personal del repositorio: página de control del artículo