Complutense University Library

Some results about the approximate controllability property for quasilinear diffusion equations

Díaz Díaz, Jesús Ildefonso and Ramos del Olmo, Ángel Manuel (1997) Some results about the approximate controllability property for quasilinear diffusion equations. Comptes Rendus de l'Académie des Sciences. Série I. Mathématique , 324 (11). pp. 1243-1248. ISSN 0764-4442

[img] PDF
Restricted to Repository staff only until 31 December 2020.

440kB

Official URL: http://www.sciencedirect.com/science/article/pii/S0764444299804078

View download statistics for this eprint

==>>> Export to other formats

Abstract

We study the approximate controllability property for y(t) - Delta phi(y) = u chi(omega), on Omega x (0, T), where Omega is a bounded open set of R-N and omega subset of Omega. First, we show some negative results for the case phi(s) = \s\(m-1)s, 0 < m < 1, by means of an obstruction phenomenon. In a second part, we obtain a positive answer on the space H-1-gamma(Omega), for any gamma > 0, for a class of functions phi essentially linear at infinity, by using a higher order vanishing viscosity argument.


Item Type:Article
Uncontrolled Keywords:quasilinear diffusion equation; approximate controllability
Subjects:Sciences > Mathematics > Differential equations
ID Code:15821
References:

C. Bandle, M. Markus. “Large” solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behaviour. Journal d'Analyse Mathématique, 58 (1992), pp. 9–24

H. Brézis. Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations.

E. Zarantonello (Ed.), Nonlinear Functional Analysis, Academic Press (1971), pp. 101–156

H. Brézis. Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert. North-Holland, New York (1973)

A. Damlamian. Some results on the multi-phase Stefan problem. Comm. Part. Diff. Eq., 2 (1977), pp. 1017–1044

J.I. Díaz, A.M. Ramos. On the Approximate Controllability for Higher Order Parabolic Nonlinear Equations of Cahn-Hilliard Type. To appear in Proceedings of the International Conference on Control and Estimation of DistributedParameter Systems (1997).

C. Fahre, J.P. Puel, E. Zuazua. Approximate controllability of the semilinear heat equation. Proceedings of the Royal Society of Edinburgh, 125A (1995), pp. 31–61

M.A. Herrero, M. Pierre. The Cauchy Problem for ut = Δum when 0 < m < 1. Trans. Amer. Math.Soc., 291 (1985), pp. 145–158

A.S. Kalashnikov. Some problems of the qualitative theory of nonlinear degenerate second-order parabolic equations. Russ. Math. Survs., 42 (1987), pp. 169–222

J.-L.Lions. Remarques sur la contrôlabilité approchée.Proceedings of Jornadas Hispano-Francesas sobreControl de Sistemas Distribuidos, Univ. de Malaga, Vorau (Austria) (1990), pp. 77–88

J. Simon. Compact Sets in the Space Lp(0, T;B). Serie 4 Annali di Mat. Pura ed Appl., 146 (1987), pp. 65–96.

Deposited On:04 Jul 2012 10:12
Last Modified:06 Feb 2014 10:32

Repository Staff Only: item control page