Biblioteca de la Universidad Complutense de Madrid

Approximate controllability of the Stokes system on cylinders by external unidirectional forces

Impacto

Díaz Díaz, Jesús Ildefonso y Fursikov, A.V. (1997) Approximate controllability of the Stokes system on cylinders by external unidirectional forces. Journal de Mathématiques Pures et Appliquées, 76 (4). pp. 353-375. ISSN 0021-7824

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.

1MB

URL Oficial: http://www.sciencedirect.com/science/article/pii/S0021782497899564




Resumen

Wt,give some negative and positive results on the approximate controllability of the Stokes system formulated on a cylinder Omega = G x R of R-3 when the control is a density of external unidirectional forces. We distinguish the case where the direction of the controls e is parallel to the cylinder generatrix (e = e(3)) from the one where e is orthogonal to this generatrix (e = e(1)). A negative result in the case of e = e(3) is proved for periodic boundary conditions on x(3), and homogeneous Dirichlet conditions on partial derivative G x R where G is a general set of R-2. In contrast to that, the approximate controllability is proved for homogeneous Dirichlet conditions on partial derivative Omega (i.e. zero on partial derivative G x R and solutions in (L-2(G x R))(3) for any t), when G is a rectangle and e = e(1) is orthogonal to the cylinder generatrix.


Tipo de documento:Artículo
Palabras clave:cylindrical domain; approximate controllability; Stokes system
Materias:Ciencias > Matemáticas > Geometría diferencial
Código ID:15822
Referencias:

A.V. Fursikov, O.Yu. Imanuvilov. On the ϵ-controllability of the Stokes problem with distributed control concentrated in a subdomain. Russian Math. Surveys, 47 (1992), pp. 255–256

A.V. Fursikov, O.Yu. Imanuvilov. On approximate controllability of the Stokes system. Annales de la Faculté des Sciences de Toulouse, Vol II (1993), pp. 205–232 nº 2

E. Hille. Analytic Function Theory. Chelsea Pub. Com., Vol II (1973)

O.A. Ladyzhenskaya. The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach (1969)

J.-L. Lions.Are there connections between turbulence and controllability?. Analyse et Optimization des Systèmes, Springer-Verlag Lecture Notes in Control and Informatic Sciences, 144 (1990)

J.-L. Lions. Remarques sur la contrôlabilité approchée. Jornadas Hispano-Francesas sobre Control de Sistemas Distribuidos, Universidad de Málaga, Spain (1990), pp. 77–87

J.-L. Lions. Contrôlabilité approchée pour le système de Stokes. Lecture at the Curso de Verano de la Universidad Complutense de Madrid on Economics, Environment and Their Mathematical Models, Almeria (July 1992)

J.-L. Lions, E. Magenes. Problèmes aux limites non homogènes et applications. Dunod (1968)

J.-L. Lions, E. Zuazua. A generic uniqueness result for the Stokes system and its control theoretical consequences.Volume dedicated to C. Pucci Marcel-Dekker (1996)

S. Mizohata. Unicité du prolongement des solutions pour quelques opérateurs différentiels paraboliques. Mem.Coll.Sci.Univ. Kyoto (3) (1958), pp. 219–239 Ser. A31

J.C. Saut, B. Scheurer. Unique continuation for some evolution equations. Journal of Differential Equations, 66 (1987), pp. 118–139

R. Temam. Navier-Stokes Equations : Théory and Numerical Analysis. North-Holland (1979)

Depositado:04 Jul 2012 10:06
Última Modificación:06 Feb 2014 10:32

Sólo personal del repositorio: página de control del artículo