Biblioteca de la Universidad Complutense de Madrid

Elliptic equations and Steiner symmetrization

Impacto

Díaz Díaz, Jesús Ildefonso y Alvino , A. y Trombetti, G. y Lions, P.L. (1996) Elliptic equations and Steiner symmetrization. Communications on pure and applied mathematics, 49 (3). pp. 217-236. ISSN 0010-3640

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.

655kB

URL Oficial: http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0312(199603)49:3%3C217::AID-CPA1%3E3.0.CO;2-G/pdf




Resumen

We give some comparison results for elliptic equations by using Steiner symmetrization.


Tipo de documento:Artículo
Palabras clave:parabolic equations
Materias:Ciencias > Matemáticas > Geometría diferencial
Ciencias > Matemáticas > Ecuaciones diferenciales
Código ID:15842
Referencias:

Alvino, A., Diaz, J. I., Lions, P. L., and Trombetti, G., Equation elliptiques et symétrization de Steiner, C. R. Acad. Sci. Paris Sér. I Math. 314, 1992, pp. 1015–1020.

Alvino, A., Lions, P. L., and Trombetti, G., A remark on comparison results via symmetrization, Proc. Edinburgh Math. Soc. 102A, 1986, pp. 37–48.

Alvino, A., Lions, P. L., and Trombetti, G., Comparison results for elliptic and parabolic equations via Schwarz symmetrization, Ann. Inst. H. Poincaré Anal. Non Linéaire 7, 1990, pp. 37–65.

Alvino, A., Lions, P. L., and Trombetti, G., Comparison results for elliptic and parabolic equations via symmetrization: a new approach, Differential Integral Equations 4, 1991, pp. 25–50.

Alvino, A., and Trombetti, G., Sulle migliori costanti di maggiorazioni per una classe di equazioni ellittiche degeneri, Ricerche Mat. 27, 1978, pp. 413–428.

Alvino, A., and Trombetti, G., Equazioni ellittiche con termini di ordine inferiore e riordinamenti, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (8) 66, 1979, pp. 194–200.

Bandle, C., Isoperimetric Inequalities and Applications, Pitman, London, 1980.

Bandle, C., On symmetrization in parabolic equations, J. Anal. Math. 30, 1976, pp. 98–112.

Bandle, C., and Kawhol, B., Application de la symétrization de Steiner aux problèmes de Poisson, preprint, 1992.

Chiti, G., Norme di Orlicz delle soluzioni di una classe di equazioni ellittiche, Boll. Un. Mat. Ital. A (5) 16, 1979, pp. 178–185.

De Giorgi, E., Su una teoria generale della misura (r - 1)-dimensionale in uno spazio ad r-dimensioni, Ann. Mat. Pura Appl. 36, 1954, pp. 191–213.

Hardy, G. H., Littlewood, J. E., and Polya, G., Inequalities, Cambridge University Press, 1964.

Laurence, P., and Stredulinsky, E. W., A bootstrap argument for Grad generalized differential equations, Indiana Univ. Math. J. 38, 1989, pp. 377–415.

Lions, P. L., Quelques rémarques sur la symétrization de Schwarz, In: Nonlinear Partial Differential Equations and Their Applications, Coll. de France Semin., 1, Pitman, London, 1980.

Maderna, C., Pagani, D., and Salsa, S., Quasilinear elliptic equations with quadratic growth in the gradient, J. Differential Equations 97, 1992, pp. 54–70.

Mossino, J., and Rakotoson, J. M., Isoperimetric inequalities in parabolic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13, 1986, pp. 51–73.

Rakotoson, J.-M., and Simon, B., Relative rearrangement on a measure space; application to the regularity of weighted monotone rearrangements. Parts I and II, Appl. Math. Lett. 6, 1993, pp. 75–82.

Talenti, G., Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 3, 1976, pp. 697–718.

Talenti, G., Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces, Ann. Mat. Pura Appl. 120, 1979, pp. 159–184.

Talenti, G., Linear elliptic P.D.E.'S: level sets, rearrangements and a priori estimates of solutions, Boll. Un. Mat. Ital. B (6), 4, 1985, pp. 917–949.

Weinberger, H., Symmetrization in uniformly elliptic problems. Studies in Math. Anal., Stanford University Press, 1962.

Depositado:06 Jul 2012 09:18
Última Modificación:06 Feb 2014 10:32

Sólo personal del repositorio: página de control del artículo