Biblioteca de la Universidad Complutense de Madrid

A representation theorem for orthogonally additive polynomials on Riesz spaces

Impacto

Llavona, José G. y Ibort Latre, Luis Alberto y Linares Briones, Pablo (2012) A representation theorem for orthogonally additive polynomials on Riesz spaces. Revista matemática complutense, 25 (1). 21-30 . ISSN 1139-1138

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.

398kB

URL Oficial: http://www.springerlink.com/content/p328874m514780v0/fulltext.pdf




Resumen

The aim of this article is to prove a representation theorem for orthogonally additive polynomials in the spirit of the recent theorem on representation of orthogonally additive polynomials on Banach lattices but for the setting of Riesz spaces. To this purpose the notion of p-orthosymmetric multilinear form is introduced and it is shown to be equivalent to the orthogonally additive property of the corresponding polynomial. Then the space of positive orthogonally additive polynomials on an Archimedean Riesz space taking values on an uniformly complete Archimedean Riesz space is shown to be isomorphic to the space of positive linear forms on the n-power in the sense of Boulabiar and Buskes of the original Riesz space.


Tipo de documento:Artículo
Palabras clave:Orthogonally additive polynomials; Riesz spaces
Materias:Ciencias > Matemáticas > Análisis funcional y teoría de operadores
Código ID:15845
Referencias:

Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Springer, Berlin (2006)

Benyamini, Y., Lassalle, S., Llavona, J.G.: Homogeneous orthogonally-additive polynomials on Banach lattices. Bull. Lond. Math. Soc. 38, 459–469 (2006)

Boulabiar, K., Buskes, G.: Vector lattice powers: f-algebras and functional calculus. Commun. Algebra 34(4), 1435–1442 (2006)

Buskes, G., Kusraev, A.G.: Representation and extension of orthoregular bilinear operators. Vladikavkaz Math. J. 9(1), 16–29 (2007)

Buskes, G., van Rooij, A.: Almost f-algebras: Commutativity and the Cauchy-Schwarz inequality. Positivity and its applications. Positivity 4(3), 227–231 (2000)

Buskes, G., van Rooij, A.: Squares of Riesz spaces. Rocky Mt. J. Math. 31(1), 45–56 (2001)

Carando, D., Lassalle, S., Zalduendo, I.: Orthogonally additive polynomials over C(K) are measures—a short proof. Integral Equ. Oper. Theory 56(4), 597–602 (2006)

Grecu, B., Ryan, R.A.: Polynomials on Banach spaces with unconditional bases. Proc. Am. Math. Soc. 133(4), 1083–1091 (2005)

Ibort, A., Linares, P., Llavona, J.G.: On the representation of orthogonally additive polynomials in ℓ p . Publ. Res. Inst. Math. Sci. 45(2), 519–524 (2009)

de Jonge, E., van Rooij, A.: Introduction to Riesz Spaces. Mathematical Centre Tracts, vol. 78. Mathematisch Centrum, Amsterdam (1977)

Pérez García, D., Villanueva, I.: Orthogonally additive polynomials on spaces of continuous functions. J. Math. Anal. Appl. 306, 97–105 (2005)

Toumi, M.A.: A decomposition theorem for orthogonally additive polynomials on Archimedean vector lattices. Private communication (2010)

Depositado:06 Jul 2012 09:16
Última Modificación:06 Feb 2014 10:32

Sólo personal del repositorio: página de control del artículo