Complutense University Library

Montaje y optimización de un sistema de pulverización catódica de alta presión de silicio amorfo hidrogenado (Assembly and optimizatión of a high pressure sputtering system for hydrogenated amorphous silicon)

García Hernansanz, Rodrigo (2012) Montaje y optimización de un sistema de pulverización catódica de alta presión de silicio amorfo hidrogenado (Assembly and optimizatión of a high pressure sputtering system for hydrogenated amorphous silicon). [Trabajo Fin de Máster]

[img] PDF
1MB
View download statistics for this eprint

==>>> Export to other formats

Abstract

El mapa energético actual se presenta complicado. Frente al crecimiento actual de la demanda de energía y los recursos energéticos, la conversión fotovoltaica aparece como una energía limpia, renovable y realista para dar solución a los problemas energéticos futuros.
En la actualidad se está trabajando en la fabricación de una tercera generación de células fotovoltaicas. La integración de materiales con una banda de estados
permitidos dentro del gap de energías prohibidas (Banda intermedia) es uno de los caminos posibles.
En el presente trabajo de investigación se depositarán y caracterizarán láminas delgadas de silicio amorfo tipo p crecidas mediante la técnica de pulverización catódica
para su posterior aplicación en células solares de estructura HIT. Concretamente se montará un sistema de pulverización catódica y se depositarán láminas delgadas de
silicio amorfo hidrogenado sobre dos tipos de sustrato, vidrio y silicio, con el objeto de caracterizar el material depositado.
Mediante las medidas realizadas se estudiarán los parámetros de depósito de nuestras láminas, así como comprobar sus características y compatibilidades con la
estructura HIT. [ABSTRACT] The new energy map shows complex. Faced with the growth of energy demand
and energy resources, photovoltaic conversion is presented as a clean energy, renewable and realistic for solving future energy problems.
Currently we are working on making a third generation photovoltaic cells. The integration of materials with a band of allowed states in the forbidden energy band gap
(intermediated band) is one of the possible paths.
This research will study thin films of p-type amorphous silicon grown by sputtering technique for further application in HIT structure solar cells. Specifically we will assemble a sputtering system and will growth thin films on two types of substrate, glass and silicon,
in order to characterize the material deposited. By the measurements we will study growth parameters of our films and their features and compatibility with the HIT structure.


Item Type:Trabajo Fin de Máster
Additional Information:

Máster en Física Aplicada. Facultad de Ciencias Físicas. Curso 2011-2012

Directors:
DirectorsDirector email
Olea Ariza, Javieroleaariza@fis.ucm.es
Pastor Pastor, Daviddpastor@fis.ucm.es
Uncontrolled Keywords:Energía Solar Fotovoltaica, Semiconductores, Láminas Delgadas, Materiales de Banda Intermedia, Pulverización Catódica, Silicio Amorfo Hidrogenado, Alta Presión, Células HIT (Heterojuccion with Intrinsic Thin Layer),Photovoltaic Solar Energy, Semiconductors, Thin Films, Intermediate Band Materials, Sputtering, Hydrogenated Amorphous Silicon, High Pressure,HIT Cells. V
Subjects:Sciences > Physics > Electronics
Sciences > Physics > Electricity
ID Code:15865
References:

1. Martí A, Luque A. Next generation photovoltaics. High efficiency through full spectrum utilization. Bristol: Institute of Physics; 2004.

2. Shockley W, Queisser HJ. Detailed balance limit of efficiency of efficiency of P-N junction solar cells.Journal of Applied Physics 1961,32:510-&.

3. Luque A, Marti A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Physical Review Letters 1997, 78:5014-5017.

4. Tanaka M, Okamoto S, Tsuge S, Kiyama S. Development of hit solar cells with more than 21% conversion efficiency and commercialization of highest performance hit modules. Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, Vols a-C 2003:955-958.

5. Martí A, Antolín E, Stanley CR, Farmer CD, López N, Díaz P, et al. Production of photocurrent due to intermediate-to-conduction-band transitions: A demonstration of a key operating principle of the intermediate-band solar cell. Physical Review Letters 2006, 97.

6. López N, Reichertz LA, Yu KM, Campman K, Walukiewicz W. Engineering the Electronic Band Structure for Multiband Solar Cells. Physical Review Letters 2011,106.

7. Sánchez K, Aguilera I, Palacios P, Wahnon P. Assessment through first-principles calculations of an intermediate-band photovoltaic material based on Ti-implanted silicon: Interstitial versus substitutional origin. Physical Review B 2009,79.

8. Luque A, Marti A, Antolín E, Tablero C. Intermediate bands versus levels in nonradiative recombination. Physica B-Condensed Matter 2006, 382:320-327.

9. Bob BP, Kohno A, Charnvanichborikarn S, Warrender JM, Umezu I, Tabbal M, et al. Fabrication and subband gap optical properties of silicon supersaturated with chalcogens by ion implantation and pulsed laser melting. Journal of Applied Physics 2010,107.

10. Hocine S, Mathiot D. Titanium diffusion in silicon. Applied Physics Letters 1988,53: 1269-1271.

11. Tanaka M, Taguchi M, Matsuyama T, Sawada T, Tsuda S, Nakano S, et al. Development of new a-Si c-Si heterojunction solar-cells -ACJ-HIT (artifially constructed junction-heterojunction whit intrinsic thin-layer). Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 1992,31:3518-3522.

12. Zeman M. Heterojunction silicon based solar cells. In. Photovoltaic Materials and Devices Laboratory.

13. Wang Q, Page MR, Iwaniczko E, Xu YQ, Roybal L, Bauer R, et al. Crystal silicon heterojunction solar cells by hot-wire CVD In: 33rd IEEE Photovoltaic Specialists Conference. San Diego, CA; 2008. pp. 453-457.

14. Tsunomura Y, Yoshimine Y, Taguchi M, Baba T, Kinoshita T, Kanno H, et al. Twenty-two percent efficiency HIT solar cell. Solar Energy Materials and Solar Cells 2009,93:670-673.

15. Olea J, Toledano-Luque M, Pastor D, González-Díaz G, Martil I. Titanium doped silicon layers with very high concentration. Journal of Applied Physics 2008,104.

16. Olea J, Pastor D, Toledano-Luque M, San-Andrés E, Martil I, González-Díaz G. High Quality Ti-Implanted Si Layers Above Solid Solubility Limit. Proceedings of the 2009 Spanish Conference on Electron Devices 2009:38-41.

17. Olea J, Toledano-Luque M, Pastor D, San-Andrés E, Martil I, González-Díaz G. High quality Ti-implanted Si layers aboye the Mott limit. Journal of Applied Physics 2010,107.

18. Antolin E, Marti A, Olea J, Pastor D, González-Díaz G, Martil I, et al. Lifetime recovery in ultrahighly titanium-doped silicon for the implementation of an intermediate band material. Applied Physics Letters 2009,94.

19. Olea J, González-Díaz G, Pastor D, Martil I, Marti A, Antolín E, et al. Two-layer Hall effect model for intermediate band Ti-implanted silicon. Journal of Applied Physics 2011,109.

20. Olea J, del Prado A, Pastor D, Martil I, González-Díaz G. Sub-bandgap absorption in Ti implanted Si over the Mott limit. Journal of Applied Physics 2011,109.

21. Wolf S, Tauber RN. Silicon Processing for the VLSI Era. California; 1986.

22. Pearse RWB, Gaydon AG. The identification of Molecular Spectra. 4 ed. London; 1976.

23. Gandía Alabadau JJ. Células solares basadas en aleaciones de silicio amorfo y microcristalino. Madrid: Universidad Complutense de Madrid; 2007:292.

24. Hernández Rojas JL, Lucía ML, Martil I, González Díaz G, Santamaría J, Sánchez Quesada F. Optical analysis of absorbing thin-films - application to ternary chalcopyrite semiconductors. Applied Optics 1992,31: 1606-1611.

25. Ibach H, Lüth H. Solid State Physics. An introduction to principles of material science. Berlin Heidelberg, Germany: Springer-Verlag; 1996.

26. Liqiang G, Jianning D, Jichang Y, Guanggui C, Zhiyong L, Ningyi Y. Effects of high hydrogen dilution ratio on optical properties of hydrogenated nanocrystalline silicon thin films. Applied Surface Science 2011 ,257.

27. Levinstein M, Rumyantsev S, Shur M. Handbook Series on Semiconductor Parameters. London; 1996,1999.

28. Reader J, Corliss CH, Wiese WL, Martin GA. Wavelengths and Transition Probabilities for Atoms and Atomic Ions. • Washington, D.C.: U.S. Government Printing Office; 1980.

29. Anutgan M, Anutgan T, Atilgan I, Katircioglu B. Photoluminescence analyses of hydrogenated amorphous silicon nitride thin films. Journal of Luminescence 2011, 131:l305-l311.

30. Akhmetov VD, Ulyashin AG, Holt A, Kittler M. Hydrogen transformations in Sibased solar structures studied by precise FTIR spectroscopy. Materials Science and Engineering B-Advanced Functional Solid-State Materials 2009,159-60: 182-185.

Deposited On:30 Jul 2012 09:10
Last Modified:01 Aug 2012 09:18

Repository Staff Only: item control page