Biblioteca de la Universidad Complutense de Madrid

Computation of the limiting distribution in queueing systems with repeated attempts and disasters


Artalejo, Jesús R. y Gómez-Corral, Antonio (1999) Computation of the limiting distribution in queueing systems with repeated attempts and disasters. RAIRO - Recherche opérationnelle - Operations Research, 33 (3). pp. 371-382. ISSN 1290-3868

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.


URL Oficial:


Single server queues with repeated attempts are useful in the modeling of computer and telecommunication systems. In addition, we consider iii this paper the possibility of disasters. When a disaster occurs, all the customers present in the sq stein are destroyed immediately. Using a regenerative approach, we derive a numerically stable recursion scheme for the stare probabilities. This model can be employed to analyze the behaviour of a buffer in computers with virus infections.

Tipo de documento:Artículo
Palabras clave:Disasters; G-networks; queueing theory; repeated attempts
Materias:Ciencias > Matemáticas > Investigación operativa
Código ID:15882

J. R.ARTALEJO, New results in retrial queueing Systems with breakdown of the servers, Statist. Neerlandica, 1994, 48, p. 23-36.

J. R.ARTALEJO and A.GOMEZ-CORRAL, Steady state solution of a single-server queue with linear request repeated, J. Appl. Probab., 1997 , 34, p. 223-233.

J. R.ARTALEJO and A.GOMEZ-CORRAL, Analysis of a stochastic clearing system with repeated attempts, Communications in Statistics-Stochastic Models, 1998, 14, p. 623-645.

R. J.BOUCHERIE and O. J.BOXMA, The workload in the M/G/1 queue with work removal, Probab. Engineering and Informational Sci., 1996, 10, p. 261-277.

X.CHAO, A queueing network model with catastrophes andproduct form solution, Operations Research Letters, 1995, 18, p. 75-79.

G.I.FALIN and J. G. C.TEMPLETON, Retrial Queues, Chapman and Hall, London, 1997.

J. M.FOURNEAU, E.GELENBE and R.SUROS, G-Networks with multiple classes of positive and negative customers, Theoret. Comput. Sci., 1996, 155, p. 141-156.

E.GELENBE, P.GLYNN and K.SIGMAN, Queues with negative arrivals, J. Appl. Probab., 1991, 28, p. 245-250.

E.GELENBE, Queueing networks with negative and positive customers and product form solution, J. Appl. Probab., 1991, 28, p. 656-663.

E.GELENBE and M.SCHASSBERGER, Stability of product form G-Networks, Probab. Engineering and Informational Sci., 1992, 6, p. 271-276.

E.GELENBE, G-Networks with triggered customer movement, J. Appl. Probab., 1993, 30, p. 742-748.

E.GELENBE, G-Networks with signals and batch removal, Probab. Engineering and Informational Sci., 1993, 7, p. 335-342.

E.GELENBE and A.LABED, G-Networks with multiple classes of signals and positive customers, European J. Oper. Res., 1998, 108, p. 393-405.

P. G.HARRISON and E.PITEL, The M/G/1 queue with negative customer, Adv. Appl.Probab., 1996, 28, p. 540-566.

G.JAIN and K.SIGMAN, A Pollaczek-Khintchine formula for M/G/1 queues with disasters, J. Appl. Probab., 1996, 33, p. 1191-1200.

A. G.DE KOK, Algorithmic methods for single server Systems with repeated attempts, Statist Neerlandica, 1984, 38, p. 23-32.

M.MARTIN and J. R.ARTALEJO, Analysis of an M/G/1 queue with two types of impatient units, Adv, Appl. Probab., 1995, 27, p. 840-861.

H.SCHELLHAAS, Commutation of the state probabilities in a class of semi-regenerative queueing Models, J. Janssen, Ed., Semi-Markov Models: Theory and Applications Plenum Press, New York and London, 1986, p. 111-130.

R.SERFOZO and S.STIDHAM, Semi-stationary clearing processes, Stochastic Process. Appl., 1978, 6, p. 165-178.

S.STIDHAM, Stochastic clearing Systems, Stochastic Process. Appl., 1974, 2, p.85-113.

H. C.TIJMS, Stochastic Models: An Algorithmic Approach, John Wiley and Sons, Chichester, 1994.

T.YANG and J. G. C.TEMPLETON, A survey on retrial queues, Queueing Systems, 1987, 2, p. 201-233.

Depositado:10 Jul 2012 11:48
Última Modificación:08 Mar 2016 15:14

Sólo personal del repositorio: página de control del artículo