Biblioteca de la Universidad Complutense de Madrid

Linear production games with fuzzy control


Molina Ferragut, Elisenda y Tejada Cazorla, Juan Antonio (2006) Linear production games with fuzzy control. Fuzzy Sets and Systems, 157 (10). pp. 1362-1383. ISSN 0165-0114

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.


URL Oficial:


The aim of this paper is to analyse linear production with committee control situations arising when controllers face the possibility of graduating their options. In order to model these situations, we consider several kinds of fuzzy controls, which can be modelled as different simple fuzzy games. An LP-game which is an extension of LP-games with committee control introduced in Curiel et al. [on balanced games and games with committee control, OR Spectrum 11 (1989) 83-88] is obtained and its core is studied.

Tipo de documento:Artículo
Palabras clave:Linear production games; Fuzzy simple games; Core
Materias:Ciencias > Matemáticas > Investigación operativa
Código ID:15907

J.P. Aubin, Cooperative fuzzy games, Math. Oper. Res. 6 (1981) 1–13.

A. Billot, Fuzzy convexity and peripherial core of an exchange economy represented as a fuzzy game, in: J. Kacprzyk, M. Fedrizzi (Eds.),Multipersons Decision Making Models using Fuzzy Sets and Possibility Theory, Kluwer, Dordrecht, 1990.

R. Brânzei, D. Dimitrov, S.H. Tijs, Convex fuzzy games and participation monotonic allocation schemes, Fuzzy Sets and Systems 139 (2003)267–281.

I. Curiel, J. Derks, S.H. Tijs, On balanced games and games with committee control, OR Spektrum 11 (1989) 83–88.

V. Cutello, J. Montero, Hierarchies of aggregation operators, Internat. J. Intelligent Systems 9 (1994) 1025–1045.

G. Debreu, H. Scarf, A limit theorem on the core of an economy, Internat. Econom. Rev. 4 (1963) 235–246.

P. Dubey, L.S. Shapley, Totally balanced games arising from controlled programming problems, Math. Programming 29 (1984) 245–267.

E. Fukuda, S. Ishihara, S. Muto, S.H. Tijs, R. Brânzei, Cooperative fuzzy games arising from economic situations, Fuzzy Econom. Rev. 10 (2005).

D. Granot, A generalized linear production model: a unifying model, Math. Programming 34 (1986) 212–222.

G.J. Klir, T.A. Folger, Fuzzy Sets, Uncertainty and Information, Prentice Hall, Englewood Cliffs, NJ, 1988.

J.L. Marichal, An axiomatic approach of the discrete Choquet integral as a tool to aggregate interacting criteria, IEEE Trans. Fuzzy Systems 8 (6) (2000) 800–807.

E. Molina, J. Tejada, Linear production games with committee control: limiting behaviour of the core, European J. Oper. Res. 154 (2004)609–625.

G. Owen, On the core of linear production games, Math. Programming 9 (1975) 358–370.

S. Tijs, R. Brânzei, S. Ishihara, S. Muto, On cores and stable sets for fuzzy games, Fuzzy Sets and Systems 146 (2004) 285–296.

R.R. Yager, On ordered weighted averaging aggregation operators in multi-criteria decision making, IEEE Trans. Systems Man Cybernet. 18 (1998) 183–190.

L.S. Shapley, M. Shubik, On market games, J. Econ. Theory 1 (1969) 9–25.

Depositado:11 Jul 2012 10:52
Última Modificación:06 Feb 2014 10:34

Sólo personal del repositorio: página de control del artículo