Universidad Complutense de Madrid
E-Prints Complutense

Existence for reaction-diffusion systems - a compactness method approach

Impacto

Descargas

Último año

Díaz Díaz, Jesús Ildefonso y Vrabie, Ioan I. (1994) Existence for reaction-diffusion systems - a compactness method approach. Journal of Mathematical Analysis and Applications, 188 (2). pp. 521-540. ISSN 0022-247X

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.

572kB

URL Oficial: http://www.sciencedirect.com/science/article/pii/S0022247X84714430


URLTipo de URL
http://www.sciencedirect.com/Editorial


Resumen

The authors study the existence of weak solutions for the following system: ut−Δφ(u)∈F(u,v), vt−Δψ(v)∈G(u,v) in (0,T)×Ω, φ(u)=ψ(v)=0 on (0,T)×∂Ω, u(0,x)=u0(x), v(0,x)=v0(x) in the region Ω⊂⊂Rn with smooth boundary ∂Ω. The functions ψ,φ:R→R are assumed to be continuous and nondecreasing with ψ(0)=φ(0)=0, u0,v0∈L∞(Ω), F,G:R2→2R with F an upper semicontinuous mapping (u.s.c.). The following local existence results are shown: (1) for the diffusive case, i.e. when both ψ and φ are strictly increasing with u.s.c. G; (2) for the semi-diffusive case (only one function φ is strictly increasing) with G being either with separated variables (i.e. having the form of the product or of the sum of two functions g(u) and H(v)) or globally Lipschitz with respect to its second variable (i.e. |G(u,v)−G(u,v′)|≤L|v−v′| for each u∈B⊂⊂R, v,v′∈R and some L=L(B)). Additional conditions (of linear form) on the growth of F and G are indicated to guarantee global existence results.


Tipo de documento:Artículo
Palabras clave:reaction diffusion systems; local and global existence of weak solutions
Materias:Ciencias > Matemáticas > Análisis numérico
Código ID:15949
Depositado:16 Jul 2012 11:07
Última Modificación:06 Feb 2014 10:35

Descargas en el último año

Sólo personal del repositorio: página de control del artículo