Complutense University Library

A simple proof of the approximate controllability from the interior for nonlinear evolution problems


Díaz Díaz, Jesús Ildefonso and Fursikov, A.V. (1994) A simple proof of the approximate controllability from the interior for nonlinear evolution problems. Applied Mathematics Letters, 7 (5). pp. 85-87. ISSN 0893-9659

[img] PDF
Restringido a Repository staff only hasta 31 December 2020.


Official URL:


The approximate controllability property for solutions of a large class of nonlinear evolution problems is obtained under some abstract conditions which hold, for instance, when the control is the right hand side of the equation. Our very simple method put in evidence the independence between the solvability of a boundary value problems and the study of the approximate controllability property which takes places in a number of cases. No duality type arguments are used which allows the consideration of very general nonlinear problems.

Item Type:Article
Uncontrolled Keywords:approximate controllability property; nonlinear evolution problems
Subjects:Sciences > Mathematics > Differential equations
ID Code:15962

J.L. Lions, Contrôle Optimal de Systemes Gouvernés par des Equations aux Derivées Partielles, Dunod, (1968).

J.L. Lions, Control of Distributed Singular Systems, Gauthier-Villars, (1985).

J. Henry, Etude de la Contrôlabilité de Certaines Equations Paraboliques, Thése d'Etat, Université de Paris VI, (1978).

J.I. Díaz, Sur la contrôlabilité approchée des inequations variationelles et d'autres problémes paraboliques non lineaires, C.R. Acad. Sci. Paris 312, 519-522 (1991).

C. Fabré, J.P. Puel and E. Zuazua, Contrôlabilité approchée de l'equation de la chaleur semi-linéaire, C.R. Acad. Sci. Paris 315,807-812 (1992).

A.Fursikov and O.Y.Imanuvilov,On approximate controllability of the Stokes system,Annales de la Fac.des Sciences de Toulouse 11 (2), 205-232 (1993).

J.I. Díaz, J. Henry and A.M. Ramos, Article in preparation.

O.Y. Imanuvilov, Boundary control of semilinear evolution equations, Russian Math. Surveys 44 (1), 65 (1993).

A. Fursikov, On sorne control problems and results concerning the unique solvability of mixed boundary value problem far the three-dimensional Navier-Stokes and Euler systems, Soviet Math. Doklady 21,889-893 (1980).

Deposited On:16 Jul 2012 11:11
Last Modified:06 Feb 2014 10:35

Repository Staff Only: item control page