Biblioteca de la Universidad Complutense de Madrid

A simple proof of the approximate controllability from the interior for nonlinear evolution problems

Impacto

Díaz Díaz, Jesús Ildefonso y Fursikov, A.V. (1994) A simple proof of the approximate controllability from the interior for nonlinear evolution problems. Applied Mathematics Letters, 7 (5). pp. 85-87. ISSN 0893-9659

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.

152kB

URL Oficial: http://www.sciencedirect.com/science/article/pii/0893965994900795




Resumen

The approximate controllability property for solutions of a large class of nonlinear evolution problems is obtained under some abstract conditions which hold, for instance, when the control is the right hand side of the equation. Our very simple method put in evidence the independence between the solvability of a boundary value problems and the study of the approximate controllability property which takes places in a number of cases. No duality type arguments are used which allows the consideration of very general nonlinear problems.


Tipo de documento:Artículo
Palabras clave:approximate controllability property; nonlinear evolution problems
Materias:Ciencias > Matemáticas > Ecuaciones diferenciales
Código ID:15962
Referencias:

J.L. Lions, Contrôle Optimal de Systemes Gouvernés par des Equations aux Derivées Partielles, Dunod, (1968).

J.L. Lions, Control of Distributed Singular Systems, Gauthier-Villars, (1985).

J. Henry, Etude de la Contrôlabilité de Certaines Equations Paraboliques, Thése d'Etat, Université de Paris VI, (1978).

J.I. Díaz, Sur la contrôlabilité approchée des inequations variationelles et d'autres problémes paraboliques non lineaires, C.R. Acad. Sci. Paris 312, 519-522 (1991).

C. Fabré, J.P. Puel and E. Zuazua, Contrôlabilité approchée de l'equation de la chaleur semi-linéaire, C.R. Acad. Sci. Paris 315,807-812 (1992).

A.Fursikov and O.Y.Imanuvilov,On approximate controllability of the Stokes system,Annales de la Fac.des Sciences de Toulouse 11 (2), 205-232 (1993).

J.I. Díaz, J. Henry and A.M. Ramos, Article in preparation.

O.Y. Imanuvilov, Boundary control of semilinear evolution equations, Russian Math. Surveys 44 (1), 65 (1993).

A. Fursikov, On sorne control problems and results concerning the unique solvability of mixed boundary value problem far the three-dimensional Navier-Stokes and Euler systems, Soviet Math. Doklady 21,889-893 (1980).

Depositado:16 Jul 2012 11:11
Última Modificación:06 Feb 2014 10:35

Sólo personal del repositorio: página de control del artículo