Complutense University Library

l(q)-structure of variable exponent spaces

Impacto

Hernández, Francisco L. and Ruiz Bermejo, César (2012) l(q)-structure of variable exponent spaces. Journal of Mathematical Analysis and Applications, 389 (2). pp. 899-907. ISSN 0022-247X

[img] PDF
Restringido a Repository staff only hasta 31 December 2020.

192kB

Official URL: http://www.sciencedirect.com/science/article/pii/S0022247X11011504




Abstract

It is shown that a separable variable exponent (or Nakano) function space L-p(.)(Ω) has a lattice-isomorphic copy of l(q) if and only if q is an element of Rp(.), the essential range set of the exponent function p(.). Consequently Rp(.) is a lattice-isomorphic invariant set. The values of q such that l(q) embeds isomorphically in L-p(.)(Ω) is determined. It is also proved the existence of a bounded orthogonal l(q)-projection in the space L-p(.)(Ω), for every q is an element of Rp(.)


Item Type:Article
Uncontrolled Keywords:Orlicz sequence-spaces; copies; variable exponent spaces; isomorphic l(p)-copies; bounded projections
Subjects:Sciences > Mathematics > Mathematical analysis
ID Code:15969
References:

C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press, 1988.

S. Chen, Geometry of Orlicz spaces, Dissertationes Math. 356 (1996).

L. Diening, P. Harjulehto, P. Hästö, M. Ružička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math., vol. 2017, Springer, 2011.

S. Guerre-Delabrière, Classical Sequences in Banach Spaces, Marcel Dekker, 1992.

F.L. Hernández, B. Rodriguez-Salinas, Remarks on the Orlicz function spaces Lϕ(0,∞), Math. Narch. 156 (1992) 225–232.

H. Hudzik, On some equivalent conditions in Musielak–Orlicz spaces, Comment. Math. (Prace Mat.) 24 (1984) 57–64.

W.B. Johnson, B. Maurey, G. Schechtman, L. Tzafriri, Symmetric structures in Banach spaces, Mem. Amer. Math. Soc. 19 (1979).

A. Kaminska, Flat Orlicz–Musielak sequence spaces, Bull. Acad. Pol. Sci., Sér. Sci. Math. 30 (1982) 347–352.

A. Kaminska, Indices, convexity and concavity in Musielak–Orlicz spaces, Funct. Approx. Comment. Math. 26 (1998) 67–84 (special issue dedicated to J. Musielak).

A. Kaminska, B. Turet, Type and cotype in Musielak–Orlicz spaces, Lecture Notes London Math. Soc. 138 (1990) 165–180.

O. Kovacik, J. Rakosnik, On spaces Lp(x) and Wk,p(x) , Czechoslovak Math. J. 41 (1991) 592–618.

M.A. Krasnosel’skii, Y. Rutickii, Convex Functions and Orlicz Spaces, P. Noordhoff Ltd., 1961.

J. Lindenstrauss, L. Tzafriri, On Orlicz sequence spaces III, Israel J. Math. 14 (1973) 368–389.

J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces I, Springer-Verlag, 1977.

J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces II, Springer-Verlag, 1979.

J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math., vol. 1034, Springer, 1983.

V. Peirats, Espacios modulares de sucesiones vectoriales. Subespacios, Ph.D. Thesis, Madrid Complutense University, 1986 (in Spanish).

V. Peirats, C. Ruiz, On lp -copies in Musielak–Orlicz sequence spaces, Arch. Math. 58 (1992) 164–173.

L.P. Poitevin, Y. Raynaud, Ranges of positive contractive projections in Nakano spaces, Indag. Math. 19 (2008) 441–464.

M. Ružička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., vol. 1748, Springer, 2000.

C. Samuel, Sur la reproductibilite des espaces lp , Math. Scand. 45 (1979) 103–117.

W. Wnuk, Banach lattices with properties of the Schur type – A survey, Conf. Sem. Math. Univ. Bari 249 (1993), 25 pp.

J.Y. Wood, On modular sequence spaces, Studia Math. 48 (1973) 271–289.

B. Zlatanov, Schur property and lp isomorphic copies in Musielak–Orlicz sequence spaces, Bull. Aust. Math. Soc. 75 (2007) 193–210.

Deposited On:16 Jul 2012 11:41
Last Modified:25 Aug 2015 08:42

Repository Staff Only: item control page