Complutense University Library

The fresnel interferometric imager

Koechlin, Laurent and Serre, Denis and Deba, Paul and Pello, Roser and Peillon, Christelle and Duchon, Paul and Gómez de Castro, Ana Inés and Karovska, Margarita and Desert, Jean-Michel and Ehrenreich, David and Hebrard, Guillaume and des Etangs, Alain Lecavelier and Ferlet, Roger and Sing, David and Vidal-Madjar, Alfred (2009) The fresnel interferometric imager. Experimental astronomy, 23 (1). pp. 379-402. ISSN 0922-6435

[img] PDF
Restricted to Repository staff only until 31 December 2020.


Official URL:

View download statistics for this eprint

==>>> Export to other formats


The Fresnel Interferometric Imager has been proposed to the European Space Agency (ESA) Cosmic Vision plan as a class L mission. This mission addresses several themes of the CV Plan: Exoplanet study, Matter in extreme conditions, and The Universe taking shape. This paper is an abridged version of the original ESA proposal. We have removed most of the technical and financial issues, to concentrate on the instrumental design and astrophysical missions. The instrument proposed is an ultra-lightweight telescope, featuring a novel optical concept based on diffraction focussing. It yields high dynamic range images, while releasing constraints on positioning and manufacturing of the main optical elements. This concept should open the way to very large apertures in space. In this two spacecraft formation-flying instrument, one spacecraft holds the focussing element: the Fresnel interferometric array; the other spacecraft holds the field optics, focal instrumentation, and detectors. The Fresnel array proposed here is a 3.6 x3.6 m square opaque foil punched with 10(5) to 10(6) void "subapertures". Focusing is achieved with no other optical element: the shape and positioning of the subapertures (holes in the foil) is responsible for beam combining by diffraction, and 5% to 10% of the total incident light ends up into a sharp focus. The consequence of this high number of subapertures is high dynamic range images. In addition, as it uses only a combination of vacuum and opaque material, this focussing method is potentially efficient over a very broad wavelength domain. The focal length of such diffractive focussing devices is wavelength dependent. However, this can be corrected. We have tested optically the efficiency of the chromatism correction on artificial sources (500 < lambda < 750 nm): the images are diffraction limited, and the dynamic range measured on an artificial double source reaches 6.2 10 (-aEuro parts per thousand 6). We have also validated numerical simulation algorithms for larger Fresnel interferometric arrays. These simulations yield a dynamic range (rejection factor) close to 10 (-aEuro parts per thousand 8) for arrays such as the 3.6 m one we propose. A dynamic range of 10 (-aEuro parts per thousand 8) allows detection of objects at contrasts as high as than 10 (-aEuro parts per thousand 9) in most of the field. The astrophysical applications cover many objects in the IR, visible an UV domains. Examples are presented, taking advantage of the high angular resolution and dynamic range capabilities of this concept.

Item Type:Article
Uncontrolled Keywords:Planet hd 209458b; extrasolar planet; protoplanetary disks; 2-dimensional distributions; interstellar-medium; gaseous molecules; column densities; atmosphere; uv; spectrum; Diffractive focussing; Formation-flying; Exoplanet detection
Subjects:Sciences > Mathematics > Astronomy
ID Code:15984
Deposited On:17 Jul 2012 11:51
Last Modified:06 Feb 2014 10:35

Repository Staff Only: item control page