Biblioteca de la Universidad Complutense de Madrid

Strictly singular and strictly co-singular inclusions between symmetric sequence spaces

Impacto

Hernández, Francisco L. y Sánchez de los Reyes, Víctor Manuel y Semenov, Evgeny M. (2004) Strictly singular and strictly co-singular inclusions between symmetric sequence spaces. Journal of Mathematical Analysis and Applications, 291 (2). pp. 459-476. ISSN 0022-247X

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.

278kB

URL Oficial: http://www.sciencedirect.com/science/article/pii/S0022247X03008448




Resumen

Strict singularity and strict co-singularity of inclusions between symmetric sequence spaces are studied. Suitable conditions are provided involving the associated fundamental functions. The special case of Lorentz and Marcinkiewicz spaces is characterized. It is also proved that if E hooked right arrow F are symmetric sequence spaces with E ≠ l(1) and F ≠ l c(0) and l(∞) then there exist a intermediate symmetric sequence space G such that E hooked right arrow G hooked right arrow F and both inclusions are not strictly singular. As a consequence new characterizations of the spaces c(o) and l(1) inside the class of all symmetric sequence spaces are given.


Tipo de documento:Artículo
Palabras clave:Basic sequences; Orlicz spaces; operators
Materias:Ciencias > Matemáticas > Análisis funcional y teoría de operadores
Código ID:16004
Referencias:

Z. Altshuler, P.G. Casazza, B.-L. Lin, On symmetric basic sequences in Lorentz sequence spaces, Israel J. Math. 15 (1973) 140–155.

S.V. Astashkin, Disjointly strictly singular inclusions of symmetric spaces, Math. Notes 65 (1999) 3–12.

C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press, 1988.

P.G. Casazza, B.-L. Lin, On symmetric basic sequences in Lorentz sequence spaces II, Israel J. Math. 17 (1974) 191–218.

F. Cobos, A. Manzano, A. Martínez, P. Matos, On interpolation of strictly singular operators, strictly cosingular operators and related operator ideals, Proc. Roy. Soc. Edinburgh Sect. A 130 (2000) 971–989.

A. Defant, M. Mastyło, C. Michels, Summing inclusion maps between symmetric sequence spaces, a survey, in: K. Bierstedt, et al. (Eds.), Recent Progress in Functional Analysis, Valencia, 2000, in: North-Holland Math. Stud., vol. 189, 2001, pp. 43–60.

A. García del Amo, F.L. Hernández, V.M. Sánchez, E.M. Semenov, Disjointly strictly-singular inclusions between rearrangement invariant spaces, J. London Math. Soc. 62 (2000) 239–252.

D.J.H. Garling, On symmetric sequence spaces, Proc. London Math. Soc. 16 (1966) 85–106.

F.L. Hernández, Disjointly strictly-singular operators in Banach lattices, 18th Winter School on Abstract Analysis, Srní, 1990, Acta Univ. Carolin. Math. Phys. 31 (1990) 35–40.

F.L. Hernández, B. Rodríguez-Salinas, On l(p)-complemented copies in Orlicz spaces II, Israel J. Math. 68 (1989) 27–55.

F.L. Hernández, B. Rodríguez-Salinas, Lattice embedding scales of Lp-spaces into Orlicz spaces, Israel J. Math. 104 (1998) 191–220.

N.J. Kalton, Orlicz sequence spaces without local convexity, Math. Proc. Cambridge Philos. Soc. 81 (1977) 253–277.

S.G. Kreĭn, Ju.I. Petunin, E.M. Semenov, Interpolation of Linear Operators, Amer. Math. Society, 1982.

J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer-Verlag, 1977.

J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces II. Function Spaces, Springer-Verlag, 1979.

D. Noll, Strict singularity of inclusion operators between γ -spaces and Meyer–König Zeller type theorems, Illinois J. Math. 35 (1991) 93–106.

A. Pełczyński, On strictly singular and strictly cosingular operators. I. Strictly singular and strictly cosingular operators in C(S)-spaces, Bull. Acad. Polon. Sci. Cl. III 13 (1965) 31–36.

A. Pełczyński, On strictly singular and strictly cosingular operators. II. Strictly singular and strictly cosingular operators in L(ν)-spaces, Bull. Acad. Polon. Sci. Cl. III 13 (1965) 37–41.

D. Przeworska-Rolewicz, S. Rolewicz, Equations in Linear Spaces, Polish Scientific Publishers, 1968.

A.K. Snyder, Strictly (co)singular operators, the Meyer–König Zeller property, and sums of Banach spaces, Illinois J. Math. 33 (1989) 93–102.

R.J.Whitley, Strictly singular operators and their conjugates, Trans. Amer. Math. Soc. 113 (1964) 252–261

Depositado:19 Jul 2012 09:30
Última Modificación:06 Feb 2014 10:36

Sólo personal del repositorio: página de control del artículo