Complutense University Library

Modelling uncertainty.

Montero de Juan, Francisco Javier and Ruan, Da (2010) Modelling uncertainty. Information Sciences, 180 . pp. 799-802. ISSN 0020-0255

[img] PDF
Restricted to Repository staff only until 2020.

138kB

Official URL: http://www.sciencedirect.com/science/article/pii/S0020025509004964

View download statistics for this eprint

==>>> Export to other formats

Abstract

In this note, we stress the relevance of developing tools for modelling uncertainty in information management and decision aiding, conceived as previous stages for decision
making. We discuss the general framework of modelling uncertainty in decision making problems and briefly introduce the specific models we have selected to illustrate these ideas, as developed by researchers.


Item Type:Article
Uncontrolled Keywords:Uncertainty; Computing with words; Information management; Decision aid
Subjects:Sciences > Computer science > Artificial intelligence
ID Code:16005
References:

F. Alonso, M. Santos, Multi-criteria genetic optimization of the manoeuvres of a two-stage launcher, Information Sciences, this issue.

K. Atanassov, Intuitionistic Fuzzy Sets, Physica-Verlag, Heidelberg, 1999.

A. Bechara, H. Damasio, A.R. Damasio, Role of the amygdala in decision making, Annals of the New York Academy of Sciences 985 (2003) 356–369.

A. Bechara, D. Tranel, H. Damasio, Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions, Brain 123 (2000) 189–2202.

E.D. Booman, M.F.S. Rushworth, Conceptual representation and the making of new decisions, Neuron 63 (2009) 721–723.

J. Borsik, J. Dobos, On a product of metric spaces, Mathematica Slovaka 31 (1981) 193–205.

H. Bustince, F. Herrera, J. Montero, Fuzzy Sets and Their Extensions: Representation, Aggregation and Models, Springer, Berlin, 2008.

E.E. Castiñeira, S. Cubillo, W. Montilla, Measuring incompatibility between Atanassov’s Intuitionistic fuzzy sets, Information Sciences, this issue.

S. Cebi, M. Celik, M. Kahraman, Structuring ship design project approval mechanism towards installation of operator-system interfaces via fuzzy axiomatic design principles, Information Sciences, this issue.

G. Deschirijver, E.E. Kerre, On the position of intuitionistic fuzzy set theory in the framework of theories modelling imprecision, Information Sciences 177 (2007) 1860–1866.

D. Dubois, S. Gottwald, P. Hajek, J. Kacprzyk, H. Prade, Terminological difficulties in fuzzy set theory – the case of intuitionistic fuzzy sets, Fuzzy Sets and Systems 156 (2005) 485–491.

T. Ertay, D. Ruan, U.R. Tuzkaya, Integrating data envelopment analysis and analytic hierarchy for the facility layout design in manufacturing systems, Information Sciences 176 (2006) 237–262.

P.K. Feyerabend, Against Method, Verso, London, 1993.

D. Gómez, J. Montero, J. Yánez, A coloring algorithm for image classification, Information Sciences 176 (2006) 3645–3657.

M. Hsu, M. Bahtt, R. Adolfs, D. Tranel, C.F. Camarer, Neural systems responding to degrees of uncertainty in human decision-making, Science 310 (2005) 1680–1683.

J.W. Kable, P.W. Glimcher, The neurobiology of decision: consensus and controversy, Neuron 63 (2009) 733–745.

C. Kahraman, D. Ruan, E. Tolga, Capital budgeting techniques using discounted fuzzy versus probabilistic cash flows, Information Sciences 142 (2002) 57–76.

I. Kaya, C. Kahraman, Development of fuzzy process accuracy index for decision making problems, Information Sciences, this issue.

A.N. Kolmogorov, Foundations of the Theory of Probability, Chelsea Publishing Company, New York, 1956.

X. Kong, Q. Wei, G. Chen, An approach to discovering mutli-temporal patterns and its application to financial databases, Information Sciences, this issue.

J. Kounios, J.L. Frymiare, E.M. Bowden, J.I. Fleck, K. Subramaniam, T.B. Parrish, M. Jung-Beeman, The prepared mind neural activity prior to problem presentation predicts subsequent solution by sudden insight, Psychological Science 17 (2006) 882–890.

D. Kumaran, J.J. Summerfield, D. Hassabais, E.A. Maguire, Tracking the emergence of conceptual knowledge during human decision making, Neuron 63 (2009) 889–901.

J. Lukasiewicz, On 3-valued logic, in: S. McCall (Ed.), Polish Logic, Oxford U.P., Oxford, 1967.

J.M. Martín, M. Santos, J. De Lope, Orthogonal variant moments features in image analysis, Information Sciences, this issue.

G. Mayor, O. Valero, Aggregation of asymmetric distances in computer science, Information Sciences, this issue.

J. Montero, D. Gómez, H. Bustince, On the relevance of some families of fuzzy sets, Fuzzy Sets and Systems 158 (2007) 2439–2442.

J. Montero, Classifiers and decision makers, in: D. Ruan et al. (Eds.), Applied Computational Intelligence, World Scientific, Singapore, 2003, pp. 19–24.

J. Montero, Fuzzy logic and science, Studies in Fuzziness and Soft Computing 243 (2009) 67–78.

J. Montero, V. López, D. Gómez, The role of fuzziness in decision making, in: D. Ruan et al. (Eds.), Fuzzy Logic: A Spectrum of Applied and Theoretical Issues, Springer, Berlin, 2006, pp. 337–349.

Z. Pei, Y. Xu, D. Ruan, K. Qin, Extracting complex linguistic data summaries from personnel database via simple linguistic aggregations, Information Sciences 179 (2009) 2325–2332.

K.R. Popper, The Logic of Scientific Discovery, Routledge, London, 2002.

S. Romaguera, M. Schellekens, Topology and its Applications 98 (1999) 311–322.

D. Ruan, F. Hardeman, K. van der Meer (Eds.), Intelligent Decision and Policy Making Support Systems, Springer, Heidelberg, 2008.

D. Ruan, J. Montero, J. Lu, L. Martinez, P. D’hondt, E.E. Kerre (Eds.), Computational Intelligence in Decision and Control, The Proceedings of FLINS2008, World Scientific, Singapore, 2008.

G. Shafer, A Mathematical Theory of Evidence, Princeton University Press, Princeton, 1976.

C. Torres-Blanc, S. Cubillo, E.E. Castiñeira, An axiomatic model for measuring contradiction and N-contradiction between two AIFSs, Information Sciences, this issue.

H. Wang, J. Liu, J.C. Augusto, Mass function derivation and combination in multivariate data spaces, Information Sciences, this issue.

X. Wang, D. Ruan, E.E. Kerre, Mathematics of Fuzziness – Basic Issues, Springer, Heidelberg, 2009.

L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.

L.A. Zadeh, The concept of linguistic variable and its application to approximate reasoning, part 3, Information Sciences 9 (1975) 43–80.

L.A. Zadeh, Is there a need for fuzzy logic?, Information Sciences 178 (2008) 2751–2779

L.A. Zadeh, Toward extended fuzzy logic – a first step, Fuzzy Sets and Systems 160 (2009) 3175–3181.

L.A. Zadeh, J. Kacprzyk (Eds.), Computing with Words in Information-intelligent Systems, vol. 1, Physica-Verlag, Heidelberg, 1999.

L.A. Zadeh, J. Kacprzyk (Eds.), Computing with Words in Information-intelligent Systems, vol. 2, Physica-Verlag, Heidelberg, 1999.

C. Zhou, D. Ruan, Fuzzy control rules extraction from perception-based information using computing with words, Information Sciences 142 (2002) 275–290.

Deposited On:19 Jul 2012 11:02
Last Modified:06 Feb 2014 10:36

Repository Staff Only: item control page