Universidad Complutense de Madrid
E-Prints Complutense

A hierarchical segmentation for image processing

Impacto

Descargas

Último año



Jesus Zarrazola, E. de y Gómez, Daniel y Montero, Javier y Yáñez, Javier (2010) A hierarchical segmentation for image processing. In 2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC). IEEE Conference Publications (http:/). IEEE , pp. 1-4. ISBN 978-1-4244-8126-2

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.

87kB

URL Oficial: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5586420


URLTipo de URL
http://www.ieee.orgInstitución


Resumen

Segmentation algorithms are well known in the field of image processing. In this work we propose an efficient
and polynomial algorithm for image segmentation based on
fuzzy set theory. The main difference with the classical segmentation algorithms is in the output given by the segmentation process. Since the classical output for segmentation algorithms give us the homogeneous regions in the image, our proposal is to produce an hierarchical information (in a similar way as a dendrogam does in classical clustering methods) of how the groups are formed in the image, from the initial situation in which all pixels are in the same group to the final situation in
which the whole image is divided in the minimal information
units.


Tipo de documento:Sección de libro
Palabras clave:Fuzzy set theory; Image segmentation; Pattern clustering; Polynomials
Materias:Ciencias > Matemáticas > Lógica simbólica y matemática
Código ID:16036
Depositado:24 Jul 2012 09:48
Última Modificación:02 Jun 2016 17:11

Descargas en el último año

Sólo personal del repositorio: página de control del artículo