Biblioteca de la Universidad Complutense de Madrid

Domination by positive disjointly strictly singular operators

Impacto

Flores Álvarez, Julio y Hernández, Francisco L. (2001) Domination by positive disjointly strictly singular operators. Proceedings of the American Mathematical Society, 129 (7). pp. 1979-1986. ISSN 0002-9939

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.

178kB

URL Oficial: http://www.ams.org/journals/proc/2001-129-07/S0002-9939-00-05948-7/S0002-9939-00-05948-7.pdf




Resumen

We prove that each positive operator from a Banach lattice E to a Banach lattice F with a disjointly strictly singular majorant is itself disjointly strictly singular provided the norm on F is order continuous. We prove as well that if S : E --> E is dominated by a disjointly strictly singular operator, then S-2 is disjointly strictly singular.


Tipo de documento:Artículo
Palabras clave:Compact operators; Banach lattices
Materias:Ciencias > Matemáticas > Análisis funcional y teoría de operadores
Código ID:16043
Referencias:

Y. A. Abramovich, Weakly compact sets in topological K-spaces, Teor. Funkcii Funkional. Anal. i Prilozen 15 (1972), 27-35.

C.D. Aliprantis and O. Burkinshaw, Positive compact operators on Banach lattices, Math. Z. 174 (1980), 289-298.

On weakly compact operators on Banach lattices, Proc. Amer. Math. Soc. 83 (1981), 573-578.

Positive operators, Academic Press, 1985.

P.G. Dodds and D.H. Fremlin, Compact operators in Banach lattices, Israel J. of Math. 34 (1979), 287-320.

N. Dunford and J.T. Schwartz, Linear Operators. Part I, General Theory, Pure and applied Mathematics, vol. VII, Interscience, New York, 1958.

A. García Del Amo, F. L. Hernández, and C. Ruiz, Disjointly strictly singular operators and interpolation, Proc. Royal Soc. of Edinburgh 126A (1996), 1011-1026.

F. L. Hernández, Disjointly Strictly-Singular Operators in Banach Lattices, Proc. 18 Winter School on Abstract Analysis (Srni). Acta Universitatis Carolinae-Mathematica et Physica 31(1990), 35-40.

F. L. Hernández and B. Rodríguez-Salinas, On lp-complemented copies in Orlicz spaces II, Israel J. of Math. 68 (1989), 27-55.

J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer-Verlag, 1977.

Classical Banach Spaces II, Springer-Verlag, 1979.

P. Meyer-Nieberg, Banach Lattices, Springer-Verlag, 1991.

A.W. Wickstead, Extremal structure of cones of operators, Quart. J. Math. Oxford Ser. (2) 32 (1981), 239-253.

Converses for the Dodds-Fremlin and Kalton-Saab theorems, Math. Proc. Camb. Phil. Soc. 120 (1996), 175-179.

A. C. Zaanen, Riesz Spaces II, North-Holland, Amsterdam, 1983.

Depositado:24 Jul 2012 09:56
Última Modificación:06 Feb 2014 10:37

Sólo personal del repositorio: página de control del artículo