Complutense University Library

On The Modelling And Simulation Of High Pressure Processes And Inactivation Of Enzymes In Food

Infante del Río, Juan Antonio and Ivorra, Benjamin and Ramos del Olmo, Ángel Manuel and Rey Cabezas, Jose María (2009) On The Modelling And Simulation Of High Pressure Processes And Inactivation Of Enzymes In Food. Mathematical Models & Methods In Applied Sciences, 19 (12). pp. 2203-2229. ISSN 0218-2025

[img] PDF
Restricted to Repository staff only until 2020.

638kB

Official URL: http://www.worldscinet.com/m3as/19/preserved-docs/1912/S0218202509004091.pdf

View download statistics for this eprint

==>>> Export to other formats

Abstract

High Pressure (HP) Processing has turned out to be very e®ective in prolonging the shelf life of some food. This paper deals with the modelling and simulation of the e®ect of the combination of high pressure and thermal treatments on food processing, focusing on the inactivation of certain
enzymes. The behavior and stability of the proposed models are checked by various numerical examples. Furthermore, various simpli¯ed versions of these models are presented and compared with each other in terms of accuracy and computational time. The models developed in this paper provide a useful tool to design suitable industrial equipments and optimize the processes.


Item Type:Article
Uncontrolled Keywords:Modelling; sensitivity analysis; food technology; High Pressure; heat and mass transfer; inactivation of enzymes; simulation;Global Optimization; Thermophysical Properties; Kinetic-Parameters; Bacillus-Subtilis; Burgers-Equation; Alpha-Amylase; Temperature;Mathematics, Applied
Subjects:Sciences > Mathematics > Numerical analysis
ID Code:16048
References:

R. Aris, Vectors, Tensors, and the Basic Equations of Fluid Mechanics (Dover, 1989).

L. Debiane, B. Ivorra, B. Mohammadi, F. Nicoud, A. Ern, T. Poinsot and H. Pitsch, A low-complexity global optimization algorithm for temperature and pollution control in ames with complex chemistry, Int. J. Comput. Fluid Dynam. 20 (2006) 93-98.

A. Delgado, C. Rauh, W. Kowalczyk and A. Baars, Review of modelling and simulation of high pressure treatment of materials of biological origin, Trends Food Sci. Tech. 19

(2008) 329-336.

S. Denys, A. van Loey and M. E. Hendrickx, A modelling approach for evaluating process uniformity during batch high hydrostatic pressure processing: Combination of a numerical heat transfer model and enzyme inactivation kinetics, Innovative Food Sci. Emerging Tech. 1 (2000) 5-19.

5. K. D. Dolan, L. Yang and C. P. Trampel, Nonlinear regression technique to estimate kinetic parameters and coñdence intervals in unsteady-state conduction-heated foods, J. Food Eng. 80 (2007) 581-593.

A. Fraguela, J. A. Infante, A. M. Ramos and J. M. Rey, Identi¯cation of a heat transfer coe±cient when it is a function depending on temperature, WSEAS Trans. Math. 7 (2008) 160-172.

B. Guignon, A. M. Ramos, J. A. Infante, J. M. Díaz and P. D. Sanz, Determining thermal parameters in the cooling of a small-scale high pressure freezing vessel, Int. J. Refrigeration 29 (2006) 1152-1159.

Chr. Hartman and A. Delgado, Numerical simulation of thermal and °uid dynamical transport e®ects on a high pressure induced inactivation, Simul. Model. Practice Theory

13 (2005) 109-118.

Chr. Hartman, A. Delgado and J. Szymczyk, Convective and di®usive transport e®ect in a high pressure induced inactivation process of packed food, J. Food Eng. 59 (2003) 33-44.

R. Hayashi, Application of high pressure to food processing and preservation: Philosophy and development, in Engineering and Food, Vol. 2 (Elsevier, 1989), pp. 815-826.

11. I. Indrawati, A. M. van Loey, C. Smout and M. E. Hendrickx, High hydrostatic pressure technology in food preservation, in Food Preservation Techniques, eds. P. Zeuthen and L. Bogh-Sorensen (Woodhead Publ. Ltd., 2003), pp. 428-448.

I. Indrawati, L. R. Ludikhuyze, A. M. van Loey and M. E. Hendrickx, Lipoxygenase inactivation in green beans(Phaseolus vulgaris L.) due to high pressure treatment at

subzero and elevated temperatures, J. Agri. Food Chem. 48 (2000) 1850-1859.

D. Isèbe, P. Azerad, F. Bouchette, B. Ivorra and B. Mohammadi, Shape optimization of geotextile tubes for sandy beach protection, Int. J. Numer. Meth. Engrg. 74 (2008)

1262-1277.

B. Ivorra, B. Mohammadi, L. Dumas, O. Durand and P. Redont, Semi-deterministic vs. genetic algorithms for global optimization of multichannel optical ¯lters, Int. J. Comput.

Sci. Eng. 2 (2006) 170-178.

B. Ivorra, B. Mohammadi and A. M. Ramos, Optimization strategies in credit portfolio management, J. Global Optim. 43 (2009) 415-427. 2228 J. A. Infante et al.

B. Ivorra, B. Mohammadi, A. M. Ramos and I. Redont, Optimizing initial guesses to improve global minimization, J. Global Optimization, submitted.

B. Ivorra, B. Mohammadi, D. E. Santiago and J. G. Hertzog, Semi-deterministic and genetic algorithms for global optimization of micro°uidic protein folding devices, Int. J.

Numer. Meth. Eng. 66 (2006) 319-333.

B. Ivorra,A. M. Ramos and B. Mohammadi, Semideterministic global optimization method: Application to a control problem of the Burgers equation, J. Optim. Th. Appl.

135 (2007) 549-561.

W. Kowalczyk and A. Delgado, On convection phenomena during high pressure treatment of liquid media, High Pressure Res. 27 (2007) 85-92.

E. W. Lemmon, M. O. McLinden and D. G. Friend, Thermophysical properties of uid systems, in eds. P. J. Linstron and W. G. Mallard, NIST Chemistry Web Book. NIST

Standard Reference Database, Vol. 69 (June 2005). National Institute of Standards and Technology. Gaitherburg MD, 20899 (http://webbook.nist.gov).

L. R. Ludikhuyze, I. van den Broeck, C. A. Weemaes and M. E. Hendrickx, Kinetic parameters for pressure-temperature inactivation of bacillus subtilis -Amylase under

dynamic conditions, Biotech. Prog. 13 (1997) 617-623.

B. Ly-Nguyen, A. M. van Loey, C. Smout, S. E. Özcan, D. Fachin, I. Verlent, S. Vu Truong, T. Duvetter and M. E. Hendrickx, Mild-heat and high-pressure inactivation of

Carrot Pectin Methyl-esterase: A kinetic study, J. Food Sci. 68 (2003) 1377-1383.

A. Melinder, Thermophysical Properties of Liquid Secondary Refrigerants (International Institute of Refrigeration, 1997).

K. Miyagawa and K. Suzuki, Studies on Takaamylase A under high pressure: Some kinetic aspects of pressure inactivation of Takaamylase, A. Arch. Biochem. Biophys.

105 (1964) 297-302.

T. Norton and D. W. Sun, Recent advances in the use of high pressure as an e®ective processing technique in the food industry, Food Bioprocess Tech. 1 (2008) 2-34.

L. Otero, A. D. MolinaGarcía and P. D. Sanz, Some inter-related thermophysical properties of liquid water and ice I. A user-friendly modeling review for food high pressure

processing, Critical Rev. Food Sci. Nutrition 42 (2002) 339-352.

L. Otero, A. Ousegui, B. Guignon, A. Le Bail and P. D. Sanz, Evaluation of the thermophysical properties of tylose gel under pressure in the phase change domain, Food Hydrocolloids 20 (2006) 449-460.

L. Otero, A. M. Ramos, C. de Elvira and P. D. Sanz, A model to design high pressure processes towards a uniform temperature distribution, J. Food Eng. 78 (2007)1463-1470.

A. M. Ramos, R. Glowinski and J. Periaux, Pointwise control of the Burgers equation and related Nash equilibrium problems: Computational approach, J. Opt. Th. Appl. 112

(2002) 499-516.

K. Suzuki and K. Kitamura, Inactivation of enzyme under high pressure: Studies on the kinetics of inactivation of -amylase of bacillus subtilis under high pressure, J. Biochem.54 (1963) 214-219.

A. Tansakul and P. Chaisawang, Thermophysical properties of coconut milk, J. Food Eng. 73 (2006) 273-280. On the Modelling and Simulation of High Pressure Processes 2229

Deposited On:24 Jul 2012 09:28
Last Modified:06 Feb 2014 10:37

Repository Staff Only: item control page