Complutense University Library

Caracterización microestructural, micromecánica y tribológica de aceros dual phase de alta resistencia sometidos a procesos de perfilado en frío (Microstructural, micromechanical and trobological characterización of high strength dual phase steels subjected to cold roll forming processes)


Ruiz Andrés, Meritxell (2012) Caracterización microestructural, micromecánica y tribológica de aceros dual phase de alta resistencia sometidos a procesos de perfilado en frío (Microstructural, micromechanical and trobological characterización of high strength dual phase steels subjected to cold roll forming processes). [Trabajo Fin de Máster]

[img] PDF


El sector de la automoción ha impulsado numerosos desarrollos en el campo de los materiales, específicamente aceros, para disminuir el peso en sus estructuras y, por tanto, el consumo de combustible y las emisiones de CO2 a la atmósfera. Uno de estos nuevos aceros que ha despertado mayor interés es el acero dual-phase, perteneciente a la familia de aceros avanzados de alta resistencia (AHSS, Advanced High Strength Steels), debido a su composición de ferrita y martensita la cual otorga a este acero una elevada resistencia con una excelente ductilidad. Sin embargo, los aceros dual-phase presentan cierta dificultad a la hora de someterse a un proceso de conformado en frío como es el perfilado de geometría variable, proceso usual para la fabricación de piezas estructurales de los automóviles. En el presente trabajo se ha llevado a cabo una extensa caracterización microestructural (mediante
microscopía óptica, microscopía electrónica de barrido y utilizando la técnica de electrones retrodispersados (EBSD)), mecánica (mediante ensayos de ultramicrodureza) y tribológica (mediante ensayos de ball-on-disc) con la finalidad de optimizar los procesos de conformado en frio de aceros dual-phase. [ABSTRACT] The automotive industry has prompted many developments in the field of materials,
particularly steels, to reduce the weight in their structures and, therefore, to reduce fuel consumption and CO2 emissions during the manufacturing of car bodies. One of these new advanced high strength steels (AHSS) is the dual-phase steel, that due to its composition of ferrite and martensite phases provide a high strength with excellent ductility. However, dualphase steels present some difficulty when they are subjected to a cold forming process such as variable geometry roll-forming, that is a usual process for the manufacture of structural parts of automobiles. The present work shows the extensive microstructural characterization (by optical microscopy, scanning electron microscopy and using backscattered electron technique (EBSD)), mechanical (by ultramicrohardness tests) and tribological (by ball-on-disc test) carried out in order to optimize the cold forming processes of dual-phase steels.

Item Type:Trabajo Fin de Máster
Additional Information:

Máster Universitario en Física Aplicada. Facultad de Ciencias Físicas. Curso 2011-2012.

DirectorsDirector email
García Diego,
Uncontrolled Keywords:Acero Dual-Phase, Ferrita, Martensita, Conformado, Perfilado, MEB, EBSD, Ultramicrodureza, Desgaste, Dual-Phase Steel, Ferrite, Martensite, Forming Process, Roll-Forming, SEM, EBSD, Ultramicrohardness, Wear
Subjects:Sciences > Physics > Materials
ID Code:16053

1. K. Sweeney, U.G., The application of roll forming for automotive structural parts. Journal of Materials Processing Technology, 2003. 132(1): p. 9‐15.

2. P. Groche, G.v.B., M. Jöckel, A. Zettler. New Concepts for Future Roll Forming Applications. in ICIT2003. 2003. Celje, Slovenia.

3. Lindgren, M., Cold roll forming of a U‐channel made of high strength steel. Journal of Materials Processing Technology, 2006. 186(5): p. 77‐81.

4. Hamid Azizi‐Alizamini, M.M.a.W.J.P., Formation of Ultrafine Grained Dual Phase Steels through Rapid Heaating. ISIJ International 2011. 51(6): p. 958‐964.

5. Cui, X., et al., Design of lightweight multi‐material automotive bodies using new material performance indices of thin‐walled beams for the material selection with crashworthiness consideration. Materials & Design, 2011. 32(2): p. 815‐821.

6. Han, Q.‐h., et al., Microstructure and Properties of Mo Microalloyed Cold Rolled DP1000 Steels. Journal of Iron and Steel Research, International, 2011. 18(5): p. 52‐58.

7. Hayat, F., Comparing Properties of Adhesive Bonding, Resistance Spot Welding, and Adhesive Weld Bonding of Coated and Uncoated DP 600 Steel. Journal of Iron and Steel Research, International, 2011. 18(9): p. 70‐78.

8. Huh, H., et al., Dynamic tensile characteristics of TRIP‐type and DP‐type steel sheets for an auto‐body. International Journal of Mechanical Sciences, 2008. 50(5): p. 918‐931.

9. Jha, G., et al., Development of hot rolled steel sheet with 600 MPa UTS for automotive wheel application. Materials Science and Engineering: A, (0).

10. Kim, D., et al., Macro‐performance evaluation of friction stir welded automotive tailorwelded blank sheets: Part II – Formability. International Journal of Solids and Structures, 2010. 47(7–8): p. 1063‐1081.

11. Oliver, S., T.B. Jones, and G. Fourlaris, Dual phase versus TRIP strip steels: Microstructural changes as a consequence of quasi‐static and dynamic tensile testing. Materials Characterization, 2007. 58(4): p. 390‐400.

12. Ozturk, F., S. Toros, and S. Kilic, Tensile and Spring‐Back Behavior of DP600 Advanced High Strength Steel at Warm Temperatures. Journal of Iron and Steel Research, International,2009. 16(6): p. 41‐46.

13. Ramazani, A., et al., Modelling the effect of microstructural banding on the flow curve behaviour of dual‐phase (DP) steels. Computational Materials Science, 2012. 52(1): p. 46‐54.

14. Romero, P., et al., Laser assisted conical spin forming of dual phase automotive steel. Experimental demonstration of work hardening reduction and forming limit extension. Physics Procedia, 2010. 5, Part B(0): p. 215‐225.

15. Sodjit, S. and V. Uthaisangsuk, Microstructure based prediction of strain hardening behavior of dual phase steels. Materials & Design, 2012. 41(0): p. 370‐379.

16. El‐Sesy, I.A. and Z.M. El‐Baradie, Influence carbon and/or iron carbide on the structure and properties of dual‐phase steels. Materials Letters, 2002. 57(3): p. 580‐585.


18. Rashid, M.S., Dual Phase Steels. Ann. Rev. Mater. Sci., 1981. 11: p. 245‐266.


20. Zhao Zheng‐zhi, J.G.‐c., Niu Feng, Tang Di, Zhao Ai‐min, Microstructure evolution and mechanical properties of 1000 MPa cold rolled dual‐phase steel. Transactions of Nonferrous Metals Society of China, 2009. 19: p. 563‐568.

21. Farabi, N., D.L. Chen, and Y. Zhou, Microstructure and mechanical properties of laser welded dissimilar DP600/DP980 dual‐phase steel joints. Journal of Alloys and Compounds, 2011. 509(3): p. 982‐989.

22. Wu‐rong, W., et al., The limit drawing ratio and formability prediction of advanced high strength dual‐phase steels. Materials & Design, 2011. 32(6): p. 3320‐3327.

23. Al‐Abbasi, F.M. and J.A. Nemes, Characterizing DP‐steels using micromechanical modeling of cells. Computational Materials Science, 2007. 39(2): p. 402‐415.

24. Rajnesh Tyagi, S.K.N., S. Ray, Effect of Martensite Content on Friction and Oxidative Wear Behaviour of 0.42 Pct Carbon Dual‐Phase; Metallurgical and Materials Transactions A, 2002. 33A: p. 3479‐3488.

25. V. H. Baltazar Hernandez, M.L.K., M. I. Khan and Y. Zhou, Influence of Microstructure and weld size on dissimilar AHSS resistance spot welds. Science and Technology of Welding and Joining, 2008. 13(8): p. 769‐776.

26. Shoujin Sun, M.P., Properties of thermomechanically processed dual‐phase steels containing fibrous martensite. Materials Science and Engineering: A, 2002. 335: p. 298‐308.

27. Tsipouridis, P., Mechanical properties of dual‐phase steels, in Fakultät für Maschinenwesen der Technischen. 2006, Universität München: München.

28. Pouranvari, M., Tensile Strength and Ductility of Ferrite‐Martensite Dual Phase Steels. Metalurgija‐Journal of Metallurgy, 2010. 16(3): p. 187‐194.

29. Wasén, J. and B. Karlsson, Influence of prestrain and ageing on near‐threshold fatigue crack growth in fine‐grained dual‐phase steels. International Journal of Fatigue, 1989. 11(6): p. 395‐405.

30. Kumar, A., S.B. Singh, and K.K. Ray, Influence of bainite/martensite‐content on the tensile properties of low carbon dual‐phase steels. Materials Science and Engineering: A, 2008. 474(1–2): p. 270‐282.

31. Bhagavathi, L.R., G.P. Chaudhari, and S.K. Nath, Mechanical and corrosion behavior of plain low carbon dual‐phase steels. Materials & Design, 2011. 32(1): p. 433‐440.

32. Meng, Q., et al., Effect of water quenching process on microstructure and tensile properties of low alloy cold rolled dual‐phase steel. Materials & Design, 2009. 30(7): p. 2379‐2385.

33. Lou, J.‐j., et al., Heat Treatment of Cold‐Rolled Low‐Carbon Si‐Mn Dual Phase Steels.Journal of Iron and Steel Research, International, 2010. 17(1): p. 54‐58.

34. Liedl, U., S. Traint, and E.A. Werner, An unexpected feature of the stress–strain diagram ofdual‐phase steel. Computational Materials Science, 2002. 25(1–2): p. 122‐128.

35. Park, K.T., et al., Ultrafine grained dual phase steel fabricated by equal channel angular pressing and subsequent intercritical annealing. Scripta Materialia, 2004. 51(9): p. 909‐913.

36. Williams, J.A., Wear and wear particles—some fundamentals. Tribology International,2005. 38(10): p. 863‐870.

37. C. Navas, I.G., Xingpu Ye, J. de Damborenea, J.P. Celis, Role of contact frequency on the wear rate of steel in discontinuous sliding contact conditions. Wear, 2006. 260: p. 1096‐ 1103.

38. García, I., A. Ramil, and J.P. Celis, A mild oxidation model valid for discontinuous contacts in sliding wear tests: role of contact frequency. Wear, 2003. 254(5–6): p. 429‐440.

39. Lim, S.C. and M.F. Ashby, Overview no. 55 Wear‐Mechanism maps. Acta Metallurgica, 1987. 35(1): p. 1‐24.

40. Ashby, M.F. and S.C. Lim, Wear‐mechanism maps. Scripta Metallurgica et Materialia, 1990. 24(5): p. 805‐810.

41. Quinn, T.F.J. and W.O. Winer, The thermal aspects of oxidational wear. Wear, 1985. 102(1– 2): p. 67‐80.

42. Quinn, T.F.J., Computational methods applied to oxidational wear. Wear, 1996. 199(2): p. 169‐180.

43. Quinn, T.F.J., Oxidational wear modelling: I. Wear, 1992. 153(1): p. 179‐200.

44. Quinn, T.F.J., Oxidational wear modelling: Part II. The general theory of oxidational wear. Wear, 1994. 175(1–2): p. 199‐208.

45. Quinn, T.F.J., Oxidational wear modelling Part III. The effects of speed and elevated temperatures. Wear, 1998. 216(2): p. 262‐275.

46. Olaf Engler, V.R., Introduction to Texture Analysis. Macrotexture, Microtexture and Orientation Mapping. 2nd ed, ed. T.F.G. CRC Press. 2010.

47. LePera, F.S., Improved etching technique for the determination of percent martensite in high‐strength dual‐phase steels. Metallography, 1979. 12(3): p. 263‐268.

48. Archard, J.F., Friction between metal surfaces. Wear, 1986. 113(1): p. 3‐16.

49. Calcagnotto, M., et al., Deformation and fracture mechanisms in fine‐ and ultrafine‐grained ferrite/martensite dual‐phase steels and the effect of aging. Acta Materialia, 2011. 59(2): p. 658‐670.

50. Calcagnotto, M., D. Ponge, and D. Raabe, Effect of grain refinement to 1 μm on strength and toughness of dual‐phase steels. Materials Science and Engineering: A, 2010. 527(29– 30): p. 7832‐7840.

51. Son, Y.I., et al., Ultrafine grained ferrite–martensite dual phase steels fabricated via equal channel angular pressing: Microstructure and tensile properties. Acta Materialia, 2005. 53(11): p. 3125‐3134.

52. Calcagnotto, M., et al., Orientation gradients and geometrically necessary dislocations in ultrafine grained dual‐phase steels studied by 2D and 3D EBSD. Materials Science and Engineering: A, 2010. 527(10–11): p. 2738‐2746.

53. Delincé, M., P.J. Jacques, and T. Pardoen, Separation of size‐dependent strengthening contributions in fine‐grained Dual Phase steels by nanoindentation. Acta Materialia, 2006. 54(12): p. 3395‐3404.

54. R. Song, D.P., D. Raabe, Grain size and grain boundary characterization in ultrafine grain steel: Max Planck Institut für Eisenforschung; Düsseldorf.

55. Y.W. Bao, W.W., Y.C. Zhou, Investigation of the relationship between elastic modulus and hardness based on depth‐sensing indentation measurements. Acta Materialia, 2004. 52: p. 5397‐5404.

56. A.Rico, M.A.G., J. Rodríguez, Problemática en la determinación de módulo elástico y dureza de materiales cerámicos de alta rigidez mediante indentación. Boletín Sociedad Española de Cerámica y Vidrio, 2008. 47(2): p. 110‐116.

57. M.A. Altuna, I.G., Aplicación de técnicas de nanoindentación y EBSD en aceros con microestructuras complejas. Revista de Metalurgia, 2008. 44(1): p. 19‐28

58. Nix, W.D. and H. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity. Journal of the Mechanics and Physics of Solids, 1998. 46(3): p. 411‐425.

59. Huang, Y., et al., A model of size effects in nano‐indentation. Journal of the Mechanics and Physics of Solids, 2006. 54(8): p. 1668‐1686.


61. Jiang, Z., Z. Guan, and J. Lian, Effects of microstructural variables on the deformation behaviour of dual‐phase steel. Materials Science and Engineering: A, 1995. 190(1–2): p. 55‐64

Deposited On:01 Aug 2012 11:22
Last Modified:31 Jul 2013 22:05

Repository Staff Only: item control page