E-Prints Complutense

Boundary Observability For The Space Semi-Discretizations Of The 1-D Wave Equation

Impacto

Descargas

Último año

Infante del Río, Juan Antonio y Zuazua Iriondo, Enrique (1999) Boundary Observability For The Space Semi-Discretizations Of The 1-D Wave Equation. Rairo-Mathematical Modelling And Numerical Analysis-Modelisation Mathematique Et Analyse Numerique, 33 (2). pp. 407-438. ISSN 0764-583X

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.

523kB

URL Oficial: http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8208264


URLTipo de URL
http://www.cambridge.org Editorial


Resumen

We consider space semi-discretizations of the 1 − d wave equation in a bounded interval with homogeneous Dirichlet boundary conditions. We analyze the problem of boundary observability,i.e., the problem of whether the total energy of solutions can be estimated uniformly in terms of the
energy concentrated on the boundary as the net-spacing h ! 0. We prove that, due to the spurious modes that the numerical scheme introduces at high frequencies, there is no such a uniform bound. We prove however a uniform bound in a subspace of solutions generated by the low frequencies of the discrete system. When h ! 0 this nite-dimensional spaces increase and eventually cover the whole space. We thus recover the well-known observability property of the continuous system as the limit of discrete observability estimates as the mesh size tends to zero. We consider both nite-dierence and nite-element semi-discretizations.


Tipo de documento:Artículo
Palabras clave:wave equation; semi-discretization; finite difference; finite element; boundary observability
Materias:Ciencias > Matemáticas > Análisis numérico
Código ID:16069
Depositado:30 Jul 2012 10:36
Última Modificación:06 Feb 2014 10:37

Descargas en el último año

Sólo personal del repositorio: página de control del artículo