Complutense University Library

Solutions of reaction-diffusion equations blowing-up on the parabolic boundary


Díaz Díaz, Jesús Ildefonso and Bandle, Chatherine and Díaz Díaz, Gregorio (1994) Solutions of reaction-diffusion equations blowing-up on the parabolic boundary. Comptes Rendus de l'Académie des Sciences. Série I. Mathématique , 318 (5). pp. 455-460. ISSN 0764-4442

[img] PDF
Restringido a Repository staff only hasta 31 December 2020.


Official URL:


We study the existence, the asymptotic behaviour near the parabolic boundary and the uniqueness of the solutions of nonlinear reaction-diffusion equations, which blow up on the parabolic boundary. We extend some results for elliptic problems given in ([1], [4]). A fondamental tool is the construction of suitable upper and lower solutions.

Item Type:Article
Uncontrolled Keywords:blow up on the parabolic boundary; upper and lower solutions; elliptic-equations; uniqueness; existence
Subjects:Sciences > Mathematics > Differential equations
ID Code:16162

C. BANDLE et M. MARCUS, J. Anal. Math., 58, 1992, p. 9-24

C. BANDLE et M. MARCUS, Asymptotic behaviour 01 solutions and their derivatives with blow up on the boundary (manuscrit).

M. G. CRANDALL, P.-L. LIONS et P. SOUGANIDIS, Arch. Rat. Mech. Anal., 105, 1989, p. 163-190.

G. DÍAZ et R. LETELlER, Nonlinear Analysis MTA, 20, 1993, p. 97-125.

J. I. DÍAZ, C. R. A cad. Sci. Paris, 312, série 1, 1991, p. 519-522.

J. I. DíAZ, Memorias de la Real Academia de Ciencias de Madrid, XXVIII, 1991.

N. J. KOREVAAR, Ind. Univ. Math. J., 32, n° 4, 1983, p. 603-614.

J. M. LASRY et P.-L. LIONS, Math Ann., 283, 1989, p. 583-630.

D. SATTlNGER, Ind. Univ. Math. J., 21, 1972, p. 979-1000.

J. L. VAZQUEZ et M. WALIAS, Existence and uniqueness of solution of diffusion-absorption equations with general data, Journal of Differential and Integral Equations (a paraitre).

Deposited On:11 Sep 2012 08:07
Last Modified:06 Feb 2014 10:39

Repository Staff Only: item control page