Complutense University Library

Existence and regularity of renormalized solutions for some elliptic problems involving derivatives of nonlinear terms

Díaz Díaz, Jesús Ildefonso and Boccardo, L. and Giachetti, D. and Murat, F. (1993) Existence and regularity of renormalized solutions for some elliptic problems involving derivatives of nonlinear terms. Journal of Differential Equations, 106 (2). pp. 215-237. ISSN 0022-0396

[img] PDF
Restricted to Repository staff only until 31 December 2020.

500kB

Official URL: http://www.sciencedirect.com/science/article/pii/S002203968371106X

View download statistics for this eprint

==>>> Export to other formats

Abstract

The authors study the nonlinear elliptic equation
(*) −div(a(x,u,Du))−div(Φ(u))+g(x,u)=f(x)in Ω
with the boundary condition (∗∗) u=0 on ∂Ω, where Ω is a bounded open subset of RN, A(u)=−div(a(x,u,Du)) is a nonlinear operator of Leray-Lions type from W1,p0(Ω) into its dual, Φ∈(C0(R))N, g(x,t)t≥0, and f∈W−1,p′(Ω). No growth hypothesis is assumed on the vector-valued function Φ(u). The term div(Φ(u)) may be meaningless for usual weak solutions, even as a distribution. The authors deal with a weaker form of (∗),(∗∗), solutions of which in W1,p0(Ω) are called the "renormalized solutions'' of the original problem (∗),(∗∗). This weaker form can be formally obtained from (∗) by means of pointwise multiplication by h(u), where h is a C1 function with compact support. They prove the existence of renormalized solutions of (∗),(∗∗) and give sufficient conditions under which a renormalized solution is a usual weak solution. Furthermore, the authors study Ls- and L∞-regularity of renormalized solutions.


Item Type:Article
Uncontrolled Keywords:renormalized solutions; nonlinear Leray-Lions operator; largest class of possible test functions
Subjects:Sciences > Mathematics > Functional analysis and Operator theory
Sciences > Mathematics > Numerical analysis
ID Code:16166
References:

P. BÉNILAN, L. BOCCARDO, T. GALLOUET, R. GARIEPY, M. PIERRE, AND J. L. VAZQUEZ, An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations, to appear.

A. BENSOUSSAN, L. BOCCARDO, AND F. MüRAT, On a nonlinear partial dífferential equation having natural growth terms and unbounded solution, Ann. Inst. H. Poincaré Anal. Non Linéaire 5, No. 4 (1988), 347-364.

L. BOCCARDO AND D. GIACHETTI, Alcune osservazioni sulla regolaritá delle soluzioni di problemi fortemenle non lineari e applicazioni, Ricerche Mat. 34, No. 2 (1985), 309-323.

L. BOCCARDO AND D. GIACHETTI, Existence results vía regularity for some nonlinear elliptic problems, Comm. Partial Differential Equations 14, Nº.5 (1989),663-680.

L. BOCCARDO, J.I. DÍAz, D. GIACHETTI, AND F. MURAT, Existence of a solution for a wcakcr form of a nonlinear elliptic equation, in "Recent Advanccs in Nonlincar Elliplic and Parabolic Problems (Proceedings. Nancy. 1988)" (P. Bénilan. M. Chipot.L.C. Evans, and M. Pierre, Eds.)pp. 229 -246, Pitman Research Notes in Mathematics Series. Vol. 208. Longman. Harlow. 1989.

L. BOCCARDO, F. MURAT , AND J.P. PUEL, Existence of bounded solutions for nonlinear elliptic unilateral problems. Ann. Mat Pur Appl. 152 (1988), 183-186.

F. E. BROWDER, Existcncc theorcms for non linear partíal differential equations, in "Proceedings or Symposia in Pure Mathematics" (S. S. Chern and S. Smale. Eds.), Vol. 16, pp. 1-60. Amer. Math. Soc., Providence, Rl, 1970.

R. J. DIPERNA AND P.-L. LIONS, Global existence for the Fokker-Planck-Boltzmann equations. Comm. Pure Appl. Math. 11, Nº 2 (1989). 729-758.

R. J. DIPERNA AND P.-L. LIONS, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. Of Math. 130 (1989), 321-366.

J. LERAY AND J.-L. LIONS, Quelques résultats de Visik sur les problèmes elliptiques non linéaires par la méthode de Minty-Browder. Bull. Soc. Math. France 93 (1965), 97-107.

P.-L. LIONS AND F. MURAT. Sur les solutions renormalisées d'équations elliptiques non linéaires, C. R. Acad. Sci. Paris, and article, to appear.

G. STAMPACCHIA, Equations elliptiques du second ordre á coefficients discontinus, Séminaires de l'Université de Montréal, Vol. 16, Montréal, 1966.

L. BOCCARDO AND F. MURAT. An existence result via L-regularity for some nonlinear elliptic equations, in "Nonlinear Diffusion Equations and Their Equilibrium States. Volume III" (N. G. Llyod, W. N. Ni, L. A. Peletier, and J. Serrin, Eds.), pp. 145-152,Progress in Nonlinear Differential Equations and Their Applications, Vol. 8, Birkhäuser,Bostan, 1992.

Deposited On:11 Sep 2012 08:16
Last Modified:06 Feb 2014 10:39

Repository Staff Only: item control page