Complutense University Library

Orthogonally additive holomorphic functions on open subsets of C(K)

Jaramillo Aguado, Jesús Ángel and Prieto Yerro, M. Ángeles and Zalduendo, Ignacio (2012) Orthogonally additive holomorphic functions on open subsets of C(K). Revista matemática complutense, 25 (1). pp. 31-41. ISSN 1139-1138

[img] PDF
Restricted to Repository staff only until 2020.

448kB

Official URL: http://www.springerlink.com/content/d64t741gt01t4x47/fulltext.pdf

View download statistics for this eprint

==>>> Export to other formats

Abstract

We introduce, study and characterize orthogonally additive holomorphic functions f:U -> a", where U is an open subset of C(K). We are led to consider orthogonal additivity at different points of U.


Item Type:Article
Uncontrolled Keywords:Infinite-dimensional holomorphy; Orthogonal additivity
Subjects:Sciences > Mathematics > Functional analysis and Operator theory
ID Code:16176
References:

Aron, R., Berner, P.: A Hahn-Banach extension theorem for analytic mappings. Bull. Soc. Math. France 106(1), 3–24 (1978)

Benyamini, Y., Lassalle, S., Llavona, J.G.: Homogeneous orthogonally-additive polynomials on Banach lattices. Bull. Lond. Math. Soc. 38(3), 459–469 (2006)

Carando, D., Lassalle, S., Zalduendo, I.: Orthogonally additive polynomials over C(K) are measures—a short proof. Integral Equ. Oper. Theory 56, 597–602 (2006)

Carando, D., Lassalle, S., Zalduendo, I.: Orthogonally additive holomorphic functions of bounded type over C(K). Proc. Edinb. Math. Soc. 53(2), 609–618 (2010)

Dineen, S.: Complex Analysis in Infinite Dimensional Spaces. Springer Monographs in Mathematics. Davie, A., Gamelin, T.: A theorem on polynomial-star approximation. Proc. Am. Math. Soc. 106(2), 351–356 (1989)

Mujica, J.: Complex Analysis on Banach Spaces. Dover, Mineola (2010)

Palazuelos, C., Peralta, A.M., Villanueva, I.: Orthogonally additive polynomials on C∗-algebras. Q. J. Math. 59(3), 363–374 (2008)

Pérez-García, D., Villanueva, I.: Orthogonally additive polynomials on spaces of continuous functions. J. Math. Anal. Appl. 306(1), 97–105 (2005)

Sundaresan, K.: Geometry of spaces of homogeneous polynomials on Banach lattices. In: Applied Geometry and Discrete Mathematics. DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 4, pp. 571–586. Amer. Math. Soc., Providence (1991)

Deposited On:11 Sep 2012 07:52
Last Modified:06 Feb 2014 10:39

Repository Staff Only: item control page