Complutense University Library

Global inversion and covering maps on length spaces

Garrido Carballo, Isabel and Gutú, Olivia and Jaramillo Aguado, Jesús Ángel (2010) Global inversion and covering maps on length spaces. Nonlinear Analysis-Theory Methods & Applications, 73 (5). pp. 1364-1374. ISSN 0362-546X

[img] PDF
Restricted to Repository staff only until 2020.

354kB

Official URL: http://www.sciencedirect.com/science/article/pii/S0362546X10002877

View download statistics for this eprint

==>>> Export to other formats

Abstract

In order to obtain global inversion theorems for mappings between length metric spaces, we investigate sufficient conditions for a local homeomorphism to be a covering map in this context. We also provide an estimate of the domain of invertibility of a local homeomorphism around a point, in terms of a kind of lower scalar derivative. As a consequence, we obtain an invertibility result using an analog of the Hadamard integral condition in the frame of length spaces. Some applications are given to the case of local diffeomorphisms between Banach-Finsler manifolds. Finally, we derive a global inversion theorem for mappings between stratified groups.


Item Type:Article
Uncontrolled Keywords:Global inversion; Length spaces; Coverings maps; Banach-Finsler manifolds
Subjects:Sciences > Mathematics > Mathematical analysis
ID Code:16215
References:

J. Hadamard, Sur les transformations ponctuelles, Bull. Soc. Math. France 34 (1906) 71-84.

P. Lévy, Sur les fonctions des lignes implicites, Bull. Soc. Math. France 48 (1920) 13-27.

F. John, On quasi-isometric maps I, Comm. Pure Appl. Math. 21 (1968) 77-110.

R. Plastock, Homeomorphisms between Banach spaces, Trans. Amer. Math. Soc. 200 (1974) 169-183.

P. Rabier, On global diffeomorphisms of Euclidean space, Nonlinear Anal. 21 (1993) 925-947.

P. Rabier, Ehresmann fibrations and Palais_Smale Conditions for morphism of finsler manifolds, Ann. of Math. 146 (1997) 547-691.

S. Nollet, F. Xavier, Global inversion via the Palais_Smale condition, Discrete Contin. Dyn. Syst. 8 (2002) 17-28.

[G. Katriel, Mountain-pass theorems and global homeomorphism theorems, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994) 189-209.

O. Gutú, J.A. Jaramillo, Global homeomorphisms and covering projections on metric spaces, Math. Ann. 338 (2007) 75-95.

O. Gutú, Global inversion theorems via coercive functionals on metric spaces, Nonlinear Anal. 66 (2007) 2688-2697.

F.E. Browder, Covering spaces, fiber spaces and local homeomorphism, Duke Math. J. 21 (1954) 329-336.

A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.

K.H. Neeb, A Cartan_Hadamard theorem for Banach_Finsler manifolds, Geom. Dedicata 95 (2002) 115-156.

H. Upmeier, Symmetric Banach manifolds and Jordan c_-algebras, North-Holland Math. Stud. 104 (1985).

R.S. Palais, Lusternik_Schnirelman theory on Banach manifolds, Topology 5 (1966) 115-132.

B. Josefson, Weak sequential convergence in the dual of a Banach space does not imply norm convergence, Ark. Mat. 13 (1975) 79-89.

A. Nissenzweig, w_ sequential convergence, Israel J. Math. 22 (1975) 266-272.

S. Lang, Fundamentals of Differential Geometry, in: GTM, vol. 191, Springer-Verlag, 1999.

N. Arcozzi, D. Morbidelli, A global inverse map theorem and bi-lipschitz maps in the heisenberg group, Annali dell Universitá di Ferrara 52 (2006) 189-197.

G.B. Folland, E. Stein, Hardy Spaces on Homogeneous Groups, Princeton University Press, 1982.

M. Gromov, Carnot_Carathéodory spaces seen from within, in: Subriemannian Geometry, in: A. Bellaïche, J. Risler (Eds.), Progress in Math., vol. 144, Verlag, Birkhauser, 1996.

V. Magnani, Elements of Geometric Measure Theory on Sub-Riemannian groups, Ph.D. Thesis of Scuola Normale Superiore de Pisa, 2002.

Deposited On:10 Sep 2012 11:21
Last Modified:07 Feb 2014 09:25

Repository Staff Only: item control page